Understanding and managing data privacy in the digital world can be challenging for sighted users, let alone blind and low-vision (BLV) users. There is limited research on how BLV users, who have special accessibility needs, navigate data privacy, and how potential privacy tools could assist them. We conducted an in-depth qualitative study with 21 US BLV participants to understand their data privacy risk perception and mitigation, as well as their information behaviors related to data privacy. We also explored BLV users' attitudes towards potential privacy question answering (Q&A) assistants that enable them to better navigate data privacy information. We found that BLV users face heightened security and privacy risks, but their risk mitigation is often insufficient. They do not necessarily seek data privacy information but clearly recognize the benefits of a potential privacy Q&A assistant. They also expect privacy Q&A assistants to possess cross-platform compatibility, support multi-modality, and demonstrate robust functionality. Our study sheds light on BLV users' expectations when it comes to usability, accessibility, trust and equity issues regarding digital data privacy.
Jamming and intrusion detection are critical in 5G research, aiming to maintain reliability, prevent user experience degradation, and avoid infrastructure failure. This paper introduces an anonymous jamming detection model for 5G based on signal parameters from the protocol stacks. The system uses supervised and unsupervised learning for real-time, high-accuracy detection of jamming, including unknown types. Supervised models reach an AUC of 0.964 to 1, compared to LSTM models with an AUC of 0.923 to 1. However, the need for data annotation limits the supervised approach. To address this, an unsupervised auto-encoder-based anomaly detection is presented with an AUC of 0.987. The approach is resistant to adversarial training samples. For transparency and domain knowledge injection, a Bayesian network-based causation analysis is introduced.
Analyzing the security of closed-source drivers and libraries in embedded systems holds significant importance, given their fundamental role in the supply chain. Unlike x86, embedded platforms lack comprehensive binary manipulating tools, making it difficult for researchers and developers to effectively detect and patch security issues in such closed-source components. Existing works either depend on full-fledged operating system features or suffer from tedious corner cases, restricting their application to bare-metal firmware prevalent in embedded environments. In this paper, we present PIFER (Practical Instrumenting Framework for Embedded fiRmware) that enables general and fine-grained static binary instrumentation for embedded bare-metal firmware. By abusing the built-in hardware exception-handling mechanism of the embedded processors, PIFER can perform instrumentation on arbitrary target addresses. Additionally, We propose an instruction translation-based scheme to guarantee the correct execution of the original firmware after patching. We evaluate PIFER against real-world, complex firmware, including Zephyr RTOS, CoreMark benchmark, and a close-sourced commercial product. The results indicate that PIFER correctly instrumented 98.9% of the instructions. Further, a comprehensive performance evaluation was conducted, demonstrating the practicality and efficiency of our work.
In an age of voice-enabled technology, voice anonymization offers a solution to protect people's privacy, provided these systems work equally well across subgroups. This study investigates bias in voice anonymization systems within the context of the Voice Privacy Challenge. We curate a novel benchmark dataset to assess performance disparities among speaker subgroups based on sex and dialect. We analyze the impact of three anonymization systems and attack models on speaker subgroup bias and reveal significant performance variations. Notably, subgroup bias intensifies with advanced attacker capabilities, emphasizing the challenge of achieving equal performance across all subgroups. Our study highlights the need for inclusive benchmark datasets and comprehensive evaluation strategies that address subgroup bias in voice anonymization.
The ability to understand spatial-temporal patterns for crowds of people is crucial for achieving long-term autonomy of mobile robots deployed in human environments. However, traditional historical data-driven memory models are inadequate for handling anomalies, resulting in poor reasoning by robot in estimating the crowd spatial distribution. In this article, a Receding Horizon Optimization (RHO) formulation is proposed that incorporates a Probability-related Partially Updated Memory (PPUM) for robot path planning in crowded environments with uncertainties. The PPUM acts as a memory layer that combines real-time sensor observations with historical knowledge using a weighted evidence fusion theory to improve robot's adaptivity to the dynamic environments. RHO then utilizes the PPUM as a informed knowledge to generate a path that minimizes the likelihood of encountering dense crowds while reducing the cost of local motion planning. The proposed approach provides an innovative solution to the problem of robot's long-term safe interaction with human in uncertain crowded environments. In simulation, the results demonstrate the superior performance of our approach compared to benchmark methods in terms of crowd distribution estimation accuracy, adaptability to anomalies and path planning efficiency.
The ability to collect a large dataset of human preferences from text-to-image users is usually limited to companies, making such datasets inaccessible to the public. To address this issue, we create a web app that enables text-to-image users to generate images and specify their preferences. Using this web app we build Pick-a-Pic, a large, open dataset of text-to-image prompts and real users' preferences over generated images. We leverage this dataset to train a CLIP-based scoring function, PickScore, which exhibits superhuman performance on the task of predicting human preferences. Then, we test PickScore's ability to perform model evaluation and observe that it correlates better with human rankings than other automatic evaluation metrics. Therefore, we recommend using PickScore for evaluating future text-to-image generation models, and using Pick-a-Pic prompts as a more relevant dataset than MS-COCO. Finally, we demonstrate how PickScore can enhance existing text-to-image models via ranking.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.