Jamming and intrusion detection are critical in 5G research, aiming to maintain reliability, prevent user experience degradation, and avoid infrastructure failure. This paper introduces an anonymous jamming detection model for 5G based on signal parameters from the protocol stacks. The system uses supervised and unsupervised learning for real-time, high-accuracy detection of jamming, including unknown types. Supervised models reach an AUC of 0.964 to 1, compared to LSTM models with an AUC of 0.923 to 1. However, the need for data annotation limits the supervised approach. To address this, an unsupervised auto-encoder-based anomaly detection is presented with an AUC of 0.987. The approach is resistant to adversarial training samples. For transparency and domain knowledge injection, a Bayesian network-based causation analysis is introduced.
Graph contrastive learning is a general learning paradigm excelling at capturing invariant information from diverse perturbations in graphs. Recent works focus on exploring the structural rationale from graphs, thereby increasing the discriminability of the invariant information. However, such methods may incur in the mis-learning of graph models towards the interpretability of graphs, and thus the learned noisy and task-agnostic information interferes with the prediction of graphs. To this end, with the purpose of exploring the intrinsic rationale of graphs, we accordingly propose to capture the dimensional rationale from graphs, which has not received sufficient attention in the literature. The conducted exploratory experiments attest to the feasibility of the aforementioned roadmap. To elucidate the innate mechanism behind the performance improvement arising from the dimensional rationale, we rethink the dimensional rationale in graph contrastive learning from a causal perspective and further formalize the causality among the variables in the pre-training stage to build the corresponding structural causal model. On the basis of the understanding of the structural causal model, we propose the dimensional rationale-aware graph contrastive learning approach, which introduces a learnable dimensional rationale acquiring network and a redundancy reduction constraint. The learnable dimensional rationale acquiring network is updated by leveraging a bi-level meta-learning technique, and the redundancy reduction constraint disentangles the redundant features through a decorrelation process during learning. Empirically, compared with state-of-the-art methods, our method can yield significant performance boosts on various benchmarks with respect to discriminability and transferability. The code implementation of our method is available at //github.com/ByronJi/DRGCL.
Emergence, a global property of complex adaptive systems (CASs) constituted by interactive agents, is prevalent in real-world dynamic systems, e.g., network-level traffic congestions. Detecting its formation and evaporation helps to monitor the state of a system, allowing to issue a warning signal for harmful emergent phenomena. Since there is no centralized controller of CAS, detecting emergence based on each agent's local observation is desirable but challenging. Existing works are unable to capture emergence-related spatial patterns, and fail to model the nonlinear relationships among agents. This paper proposes a hierarchical framework with spatio-temporal consistency learning to solve these two problems by learning the system representation and agent representations, respectively. Especially, spatio-temporal encoders are tailored to capture agents' nonlinear relationships and the system's complex evolution. Representations of the agents and the system are learned by preserving the intrinsic spatio-temporal consistency in a self-supervised manner. Our method achieves more accurate detection than traditional methods and deep learning methods on three datasets with well-known yet hard-to-detect emergent behaviors. Notably, our hierarchical framework is generic, which can employ other deep learning methods for agent-level and system-level detection.
Inspired by human conscious planning, we propose Skipper, a model-based reinforcement learning agent utilizing spatio-temporal abstractions to generalize learned skills in novel situations. It automatically decomposes the given task into smaller, more manageable subtasks, and hence enables sparse decision-making and focused computation on the relevant parts of the environment. This relies on the extraction of an abstracted proxy problem represented as a directed graph, in which vertices and edges are learned end-to-end from hindsight. Our theoretical analyses provide performance guarantees under appropriate assumptions and establish where our approach is expected to be helpful. Generalization-focused experiments validate Skipper's significant advantage in zero-shot generalization, compared to existing state-of-the-art hierarchical planning methods.
We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
The design and optimization of hardware have traditionally been resource-intensive, demanding considerable expertise and dependence on established design automation tools. This paper discusses the possibility of exploiting large language models to streamline the code generation process in hardware design. In contrast to earlier studies, this paper aims to use large language models that accepts high-level design specifications through a single prompt to generate corresponding Register-Transfer Level (RTL) code. The ability to use large language models on RTL code generation not only expedites design iteration cycles but also facilitates the exploration of design spaces that have computational challenges for conventional techniques. Through our evaluation, we demonstrate the shortcoming of existing attention mechanisms, and present the abilities of language models to produce functional, optimized, and industry-standard compliant RTL code when a novel attention mechanism is used. These findings underscore the expanding role of large language models in shaping the future landscape of architectural exploration and automation in hardware design.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.