Different with conventional reconfigurable intelligent surface (RIS), simultaneous transmitting and reflecting RIS (STAR-RIS) can reflect and transmit the signals to the receiver. In this paper, to serve more ground users and increase the deployment flexibility, we investigate an unmanned aerial vehicle equipped with a STAR-RIS (STAR-RIS-UAV) aided wireless communications for multi-user networks. Energy splitting (ES) and mode switching (MS) protocols are considered to control the reflection and transmission coefficients of STAR-RIS elements. To maximize the sum rate of the STAR-RIS-UAV aided coordinated multipoint cellular system for multi-user networks, the corresponding beamforming vectors as well as transmitted and reflected coefficients matrices are optimized. Specifically, instead of adopting the alternating optimization, we design an iteration method to optimize all variables for both ES and MS protocols at the same time. Simulation results reveal that STAR-RIS-UAV aided wireless communication system has a much higher sum rate than the system with conventional RIS or without RIS. Furthermore, the proposed structure is more flexible than a fixed STAR-RIS and could greatly promote the sum rate.
In hearing aid applications, an important objective is to accurately estimate the direction of arrival (DOA) of multiple speakers in noisy and reverberant environments. Recently, we proposed a binaural DOA estimation method, where the DOAs of the speakers are estimated by selecting the directions for which the so-called Hermitian angle spectrum between the estimated relative transfer function (RTF) vector and a database of prototype anechoic RTF vectors is maximized. The RTF vector is estimated using the covariance whitening (CW) method, which requires a computationally complex generalized eigenvalue decomposition. The spatial spectrum is obtained by only considering frequencies where it is likely that one speaker dominates over the other speakers, noise and reverberation. In this contribution, we exploit the availability of an external microphone that is spatially separated from the hearing aid microphones and consider a low-complexity RTF vector estimation method that assumes a low spatial coherence between the undesired components in the external microphone and the hearing aid microphones. Using recordings of two speakers and diffuse-like babble noise in acoustic environments with mild reverberation and low signal-to-noise ratio, simulation results show that the proposed method yields a comparable DOA estimation performance as the CW method at a lower computational complexity.
With the rapid proliferation of Internet of Things (IoT) devices and the growing concern for data privacy among the public, Federated Learning (FL) has gained significant attention as a privacy-preserving machine learning paradigm. FL enables the training of a global model among clients without exposing local data. However, when a federated learning system runs on wireless communication networks, limited wireless resources, heterogeneity of clients, and network transmission failures affect its performance and accuracy. In this study, we propose a novel dynamic cross-tier FL scheme, named FedDCT to increase training accuracy and performance in wireless communication networks. We utilize a tiering algorithm that dynamically divides clients into different tiers according to specific indicators and assigns specific timeout thresholds to each tier to reduce the training time required. To improve the accuracy of the model without increasing the training time, we introduce a cross-tier client selection algorithm that can effectively select the tiers and participants. Simulation experiments show that our scheme can make the model converge faster and achieve a higher accuracy in wireless communication networks.
We introduce a smart dimming sunglasses system designed for photophobia sufferers, particularly those highly sensitive to light intensity. The system incorporates a spatial light modulator (SLM) to filter light based on camera-detected scenes, controlling pixel transmittance via a modulation function for automated non-linear field of view dimming, thus offering flexible light modulation to meet the visual needs of photophobic users. However, a conventional occlusion mask on the SLM, aimed at blocking incoming light, appears blurred and insufficient due to a misaligned focal plane. Previous attempts to remedy this with an aperture-based expanded mask led to over-blocking (occlusion leak), due to an excessively large expansion radius. Our work, therefore, focuses on developing an optimization model that simulates a defocused occlusion mask and determines the degraded pixels' effective contribution by studying pixel transmittance occlusion efficiency. This optimized mask successfully attenuates bright areas to appropriate brightness levels without unnecessary attenuation of areas that do not require modulation, overcoming the limitations of both the unprocessed and aperture-based expanded masks.
A location-aware multi-antenna coded caching scheme is proposed for applications with location-dependent data requests, such as wireless immersive experience, where users are immersed in a three-dimensional virtual world. The wireless connectivity conditions vary as the users move within the application area motivating the use of a non-uniform cache memory allocation process to avoid excessive delivery time for users located in wireless bottleneck areas. To this end, a location-aware placement and delivery array (LAPDA) is designed for cache-aided multiantenna data delivery with a fast converging, iterative linear beamforming process. The underlying weighted max-min transmit precoder design enables the proposed scheme to serve users in poor connectivity areas with smaller amounts of data while simultaneously delivering larger amounts to other users. Our new scheme is suitable for large networks due to its linear transceiver structure and it is not constrained by the number of users, cache size, or the number of antennas at the transmitter, unlike the existing schemes. Despite non-uniform cache placement, the proposed scheme still achieves a significant degree of coded caching gain that is additive to the multiplexing gain and greatly outperforms the conventional symmetric CC schemes in terms of both average and 95-percentile delivery time.
Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.
High-speed long polynomial multiplication is important for applications in homomorphic encryption (HE) and lattice-based cryptosystems. This paper addresses low-latency hardware architectures for long polynomial modular multiplication using the number-theoretic transform (NTT) and inverse NTT (iNTT). Chinese remainder theorem (CRT) is used to decompose the modulus into multiple smaller moduli. Our proposed architecture, namely PaReNTT, makes four novel contributions. First, parallel NTT and iNTT architectures are proposed to reduce the number of clock cycles to process the polynomials. This can enable real-time processing for HE applications, as the number of clock cycles to process the polynomial is inversely proportional to the level of parallelism. Second, the proposed architecture eliminates the need for permuting the NTT outputs before their product is input to the iNTT. This reduces latency by n/4 clock cycles, where n is the length of the polynomial, and reduces buffer requirement by one delay-switch-delay circuit of size n. Third, an approach to select special moduli is presented where the moduli can be expressed in terms of a few signed power-of-two terms. Fourth, novel architectures for pre-processing for computing residual polynomials using the CRT and post-processing for combining the residual polynomials are proposed. These architectures significantly reduce the area consumption of the pre-processing and post-processing steps. The proposed long modular polynomial multiplications are ideal for applications that require low latency and high sample rate as these feed-forward architectures can be pipelined at arbitrary levels.
This work is concerned with numerically recovering multiple parameters simultaneously in the subdiffusion model from one single lateral measurement on a part of the boundary, while in an incompletely known medium. We prove that the boundary measurement corresponding to a fairly general boundary excitation uniquely determines the order of the fractional derivative and the polygonal support of the diffusion coefficient, without knowing either the initial condition or the source. The uniqueness analysis further inspires the development of a robust numerical algorithm for recovering the fractional order and diffusion coefficient. The proposed algorithm combines small-time asymptotic expansion, analytic continuation of the solution and the level set method. We present extensive numerical experiments to illustrate the feasibility of the simultaneous recovery. In addition, we discuss the uniqueness of recovering general diffusion and potential coefficients from one single partial boundary measurement, when the boundary excitation is more specialized.
In this work, we study massive multiple-input multiple-output (MIMO) precoders optimizing power consumption while achieving the users' rate requirements. We first characterize analytically the solutions for narrowband and wideband systems minimizing the power amplifiers (PAs) consumption in low system load, where the per-antenna power constraints are not binding. After, we focus on the asymptotic wideband regime. The power consumed by the whole base station (BS) and the high-load scenario are then also investigated. We obtain simple solutions, and the optimal strategy in the asymptotic case reduces to finding the optimal number of active antennas, relying on known precoders among the active antennas. Numerical results show that large savings in power consumption are achievable in the narrowband system by employing antenna selection, while all antennas need to be activated in the wideband system when considering only the PAs consumption, and this implies lower savings. When considering the overall BS power consumption and a large number of subcarriers, we show that significant savings are achievable in the low-load regime by using a subset of the BS antennas. While optimization based on transmit power pushes to activate all antennas, optimization based on consumed power activates a number of antennas proportional to the load.
This paper presents a novel approach for optical flow control of Micro Air Vehicles (MAVs). The task is challenging due to the nonlinearity of optical flow observables. Our proposed Incremental Nonlinear Dynamic Inversion (INDI) control scheme incorporates an efficient data-driven method to address the nonlinearity. It directly estimates the inverse of the time-varying control effectiveness in real-time, eliminating the need for the constant assumption and avoiding high computation in traditional INDI. This approach effectively handles fast-changing system dynamics commonly encountered in optical flow control, particularly height-dependent changes. We demonstrate the robustness and efficiency of the proposed control scheme in numerical simulations and also real-world flight tests: multiple landings of an MAV on a static and flat surface with various tracking setpoints, hovering and landings on moving and undulating surfaces. Despite being challenged with the presence of noisy optical flow estimates and the lateral and vertical movement of the landing surfaces, the MAV is able to successfully track or land on the surface with an exponential decay of both height and vertical velocity at almost the same time, as desired.
Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements.