Modeling complex systems that consist of different types of objects leads to multilayer networks, in which vertices are connected by both inter-layer and intra-layer edges. In this paper, we investigate multiplex networks, in which vertices in different layers are identified with each other, and the only inter-layer edges are those that connect a vertex with its copy in other layers. Let the third-order adjacency tensor $\mathcal{A}\in\R^{N\times N\times L}$ and the parameter $\gamma\geq 0$, which is associated with the ease of communication between layers, represent a multiplex network with $N$ vertices and $L$ layers. To measure the ease of communication in a multiplex network, we focus on the average inverse geodesic length, which we refer to as the multiplex global efficiency $e_\mathcal{A}(\gamma)$ by means of the multiplex path length matrix $P\in\R^{N\times N}$. This paper generalizes the approach proposed in \cite{NR23} for single-layer networks. We describe an algorithm based on min-plus matrix multiplication to construct $P$, as well as variants $P^K$ that only take into account multiplex paths made up of at most $K$ intra-layer edges. These matrices are applied to detect redundant edges and to determine non-decreasing lower bounds $e_\mathcal{A}^K(\gamma)$ for $e_\mathcal{A}(\gamma)$, for $K=1,2,\dots,N-2$. Finally, the sensitivity of $e_\mathcal{A}^K(\gamma)$ to changes of the entries of the adjacency tensor $\mathcal{A}$ is investigated to determine edges that should be strengthened to enhance the multiplex global efficiency the most.
A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a universal model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can be efficiently extracted from Bell samples, we give two new and efficient protocols, a test for the depth of the circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional measurements, our algorithm learns a full description of states prepared by circuits with low T-count.
Deep neural networks for graphs have emerged as a powerful tool for learning on complex non-euclidean data, which is becoming increasingly common for a variety of different applications. Yet, although their potential has been widely recognised in the machine learning community, graph learning is largely unexplored for downstream tasks such as robotics applications. To fully unlock their potential, hence, we propose a review of graph neural architectures from a robotics perspective. The paper covers the fundamentals of graph-based models, including their architecture, training procedures, and applications. It also discusses recent advancements and challenges that arise in applied settings, related for example to the integration of perception, decision-making, and control. Finally, the paper provides an extensive review of various robotic applications that benefit from learning on graph structures, such as bodies and contacts modelling, robotic manipulation, action recognition, fleet motion planning, and many more. This survey aims to provide readers with a thorough understanding of the capabilities and limitations of graph neural architectures in robotics, and to highlight potential avenues for future research.
Analysis of higher-order organizations, usually small connected subgraphs called motifs, is a fundamental task on complex networks. This paper studies a new problem of testing higher-order clusterability: given query access to an undirected graph, can we judge whether this graph can be partitioned into a few clusters of highly-connected motifs? This problem is an extension of the former work proposed by Czumaj et al. (STOC' 15), who recognized cluster structure on graphs using the framework of property testing. In this paper, a good graph cluster on high dimensions is first defined for higher-order clustering. Then, query lower bound is given for testing whether this kind of good cluster exists. Finally, an optimal sublinear-time algorithm is developed for testing clusterability based on triangles.
We consider Gibbs distributions, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The partition function is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs, independent sets, and perfect matchings. As a key subroutine, we also develop algorithms to compute the partition function $Z$ using $\tilde O(\frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and using $\tilde O(\frac{n^2}{\varepsilon^2})$ samples for integer-valued distributions.
The increasing prevalence of multiplex networks has spurred a critical need to take into account potential dependencies across different layers, especially when the goal is community detection, which is a fundamental learning task in network analysis. We propose a full Bayesian mixture model for community detection in both single-layer and multi-layer networks. A key feature of our model is the joint modeling of the nodal attributes that often come with the network data as a spatial process over the latent space. In addition, our model for multi-layer networks allows layers to have different strengths of dependency in the unique latent position structure and assumes that the probability of a relation between two actors (in a layer) depends on the distances between their latent positions (multiplied by a layer-specific factor) and the difference between their nodal attributes. Under our prior specifications, the actors' positions in the latent space arise from a finite mixture of Gaussian distributions, each corresponding to a cluster. Simulated examples show that our model outperforms existing benchmark models and exhibits significantly greater robustness when handling datasets with missing values. The model is also applied to a real-world three-layer network of employees in a law firm.
A myriad of approaches have been proposed to characterise the mesoscale structure of networks - most often as a partition based on patterns variously called communities, blocks, or clusters. Clearly, distinct methods designed to detect different types of patterns may provide a variety of answers to the network's mesoscale structure. Yet, even multiple runs of a given method can sometimes yield diverse and conflicting results, producing entire landscapes of partitions which potentially include multiple (locally optimal) mesoscale explanations of the network. Such ambiguity motivates a closer look at the ability of these methods to find multiple qualitatively different 'ground truth' partitions in a network. Here, we propose the stochastic cross-block model (SCBM), a generative model which allows for two distinct partitions to be built into the mesoscale structure of a single benchmark network. We demonstrate a use case of the benchmark model by appraising the power of stochastic block models (SBMs) to detect implicitly planted coexisting bi-community and core-periphery structures of different strengths. Given our model design and experimental set-up, we find that the ability to detect the two partitions individually varies by SBM variant and that coexistence of both partitions is recovered only in a very limited number of cases. Our findings suggest that in most instances only one - in some way dominating - structure can be detected, even in the presence of other partitions. They underline the need for considering entire landscapes of partitions when different competing explanations exist and motivate future research to advance partition coexistence detection methods. Our model also contributes to the field of benchmark networks more generally by enabling further exploration of the ability of new and existing methods to detect ambiguity in the mesoscale structure of networks.
Combining strengths from deep learning and extreme value theory can help describe complex relationships between variables where extreme events have significant impacts (e.g., environmental or financial applications). Neural networks learn complicated nonlinear relationships from large datasets under limited parametric assumptions. By definition, the number of occurrences of extreme events is small, which limits the ability of the data-hungry, nonparametric neural network to describe rare events. Inspired by recent extreme cold winter weather events in North America caused by atmospheric blocking, we examine several probabilistic generative models for the entire multivariate probability distribution of daily boreal winter surface air temperature. We propose metrics to measure spatial asymmetries, such as long-range anticorrelated patterns that commonly appear in temperature fields during blocking events. Compared to vine copulas, the statistical standard for multivariate copula modeling, deep learning methods show improved ability to reproduce complicated asymmetries in the spatial distribution of ERA5 temperature reanalysis, including the spatial extent of in-sample extreme events.
Flow-based models are widely used in generative tasks, including normalizing flow, where a neural network transports from a data distribution $P$ to a normal distribution. This work develops a flow-based model that transports from $P$ to an arbitrary $Q$ where both distributions are only accessible via finite samples. We propose to learn the dynamic optimal transport between $P$ and $Q$ by training a flow neural network. The model is trained to find an invertible transport map between $P$ and $Q$ optimally by minimizing the transport cost. The trained optimal transport flow allows for performing many downstream tasks, including infinitesimal density ratio estimation and distribution interpolation in the latent space for generative models. The effectiveness of the proposed model on high-dimensional data is empirically demonstrated in mutual information estimation, energy-based generative models, and image-to-image translation.
We discuss recently developed methods that quantify the stability and generalizability of statistical findings under distributional changes. In many practical problems, the data is not drawn i.i.d. from the target population. For example, unobserved sampling bias, batch effects, or unknown associations might inflate the variance compared to i.i.d. sampling. For reliable statistical inference, it is thus necessary to account for these types of variation. We discuss and review two methods that allow quantifying distribution stability based on a single dataset. The first method computes the sensitivity of a parameter under worst-case distributional perturbations to understand which types of shift pose a threat to external validity. The second method treats distributional shifts as random which allows assessing average robustness (instead of worst-case). Based on a stability analysis of multiple estimators on a single dataset, it integrates both sampling and distributional uncertainty into a single confidence interval.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.