亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A myriad of approaches have been proposed to characterise the mesoscale structure of networks - most often as a partition based on patterns variously called communities, blocks, or clusters. Clearly, distinct methods designed to detect different types of patterns may provide a variety of answers to the network's mesoscale structure. Yet, even multiple runs of a given method can sometimes yield diverse and conflicting results, producing entire landscapes of partitions which potentially include multiple (locally optimal) mesoscale explanations of the network. Such ambiguity motivates a closer look at the ability of these methods to find multiple qualitatively different 'ground truth' partitions in a network. Here, we propose the stochastic cross-block model (SCBM), a generative model which allows for two distinct partitions to be built into the mesoscale structure of a single benchmark network. We demonstrate a use case of the benchmark model by appraising the power of stochastic block models (SBMs) to detect implicitly planted coexisting bi-community and core-periphery structures of different strengths. Given our model design and experimental set-up, we find that the ability to detect the two partitions individually varies by SBM variant and that coexistence of both partitions is recovered only in a very limited number of cases. Our findings suggest that in most instances only one - in some way dominating - structure can be detected, even in the presence of other partitions. They underline the need for considering entire landscapes of partitions when different competing explanations exist and motivate future research to advance partition coexistence detection methods. Our model also contributes to the field of benchmark networks more generally by enabling further exploration of the ability of new and existing methods to detect ambiguity in the mesoscale structure of networks.

相關內容

Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings pose challenges for interpretability, especially in comprehending how various aspects of mobility behavior affect predictions. In this study, we introduce a causal intervention framework to assess the impact of mobility-related factors on neural networks designed for next location prediction -- a task focusing on predicting the immediate next location of an individual. To achieve this, we employ individual mobility models to generate synthetic location visit sequences and control behavior dynamics by intervening in their data generation process. We evaluate the interventional location sequences using mobility metrics and input them into well-trained networks to analyze performance variations. The results demonstrate the effectiveness in producing location sequences with distinct mobility behaviors, thus facilitating the simulation of diverse spatial and temporal changes. These changes result in performance fluctuations in next location prediction networks, revealing impacts of critical mobility behavior factors, including sequential patterns in location transitions, proclivity for exploring new locations, and preferences in location choices at population and individual levels. The gained insights hold significant value for the real-world application of mobility prediction networks, and the framework is expected to promote the use of causal inference for enhancing the interpretability and robustness of neural networks in mobility applications.

A simple way of obtaining robust estimates of the "center" (or the "location") and of the "scatter" of a dataset is to use the maximum likelihood estimate with a class of heavy-tailed distributions, regardless of the "true" distribution generating the data. We observe that the maximum likelihood problem for the Cauchy distributions, which have particularly heavy tails, is geodesically convex and therefore efficiently solvable (Cauchy distributions are parametrized by the upper half plane, i.e. by the hyperbolic plane). Moreover, it has an appealing geometrical meaning: the datapoints, living on the boundary of the hyperbolic plane, are attracting the parameter by unit forces, and we search the point where these forces are in equilibrium. This picture generalizes to several classes of multivariate distributions with heavy tails, including, in particular, the multivariate Cauchy distributions. The hyperbolic plane gets replaced by symmetric spaces of noncompact type. Geodesic convexity gives us an efficient numerical solution of the maximum likelihood problem for these distribution classes. This can then be used for robust estimates of location and spread, thanks to the heavy tails of these distributions.

We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to other robots. In this paper, we propose a method to learn correspondences among two or more robots that may have different morphologies. To be specific, besides robots with similar morphologies with different degrees of freedom, we show that a fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework. To set up the correspondence among the robots considered, an initial base task is demonstrated to the robots to achieve the same goal. Then, a common latent representation is learned along with the individual robot policies for achieving the goal. After the initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robots to achieve the same task. We verified our system in a set of experiments where the correspondence between robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.

Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a modern toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the data competition organised for the 13th International Conference on Extreme Value Analysis (EVA2023). This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia".

Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Like associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum.

Neural Persistence is a prominent measure for quantifying neural network complexity, proposed in the emerging field of topological data analysis in deep learning. In this work, however, we find both theoretically and empirically that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence. Whilst this captures useful information for linear classifiers, we find that no relevant spatial structure is present in later layers of deep neural networks, making neural persistence roughly equivalent to the variance of weights. Additionally, the proposed averaging procedure across layers for deep neural networks does not consider interaction between layers. Based on our analysis, we propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers, which is equivalent to calculating neural persistence on one particular matrix. This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues through standardisation. Code is available at //github.com/ExplainableML/Deep-Graph-Persistence .

A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.

The spread of an infection, a contagion, meme, emotion, message and various other spreadable objects have been discussed in several works. Burning and firefighting have been discussed in particular on static graphs. Graph burning simulates the notion of the spread of "fire" throughout a graph (plus, one unburned node burned at each time-step); graph firefighting simulates the defending of nodes by placing firefighters on the nodes which have not been already burned while the fire is being spread (started by only a single fire source). This article studies a combination of firefighting and burning on a graph class which is a variation (generalization) of temporal graphs. Nodes can be infected from "outside" a network. We present a notion of both upgrading (of unburned nodes, similar to firefighting) and repairing (of infected nodes). The nodes which are burned, firefighted, or repaired are chosen probabilistically. So a variable amount of nodes are allowed to be infected, upgraded and repaired in each time step. In the model presented in this article, both burning and firefighting proceed concurrently, we introduce such a system to enable the community to study the notion of spread of an infection and the notion of upgrade/repair against each other. The graph class that we study (on which, these processes are simulated) is a variation of temporal graph class in which at each time-step, probabilistically, a communication takes place (iff an edge exists in that time step). In addition, a node can be "worn out" and thus can be removed from the network, and a new healthy node can be added to the network as well. This class of graphs enables systems with high complexity to be able to be simulated and studied.

Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our decomposition is compatible with the projector-splitting integrator, and can therefore access second-order accuracy in time via a Strang splitting scheme. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as a second-order accurate integrator which exactly conserves charge and energy. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.

Orthogonal meta-learners, such as DR-learner, R-learner and IF-learner, are increasingly used to estimate conditional average treatment effects. They improve convergence rates relative to na\"{\i}ve meta-learners (e.g., T-, S- and X-learner) through de-biasing procedures that involve applying standard learners to specifically transformed outcome data. This leads them to disregard the possibly constrained outcome space, which can be particularly problematic for dichotomous outcomes: these typically get transformed to values that are no longer constrained to the unit interval, making it difficult for standard learners to guarantee predictions within the unit interval. To address this, we construct orthogonal meta-learners for the prediction of counterfactual outcomes which respect the outcome space. As such, the obtained i-learner or imputation-learner is more generally expected to outperform existing learners, even when the outcome is unconstrained, as we confirm empirically in simulation studies and an analysis of critical care data. Our development also sheds broader light onto the construction of orthogonal learners for other estimands.

北京阿比特科技有限公司