亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.

相關內容

GUI testing is significant in the SE community. Most existing frameworks are intrusive and only support some specific platforms. With the development of distinct scenarios, diverse embedded systems or customized operating systems on different devices do not support existing intrusive GUI testing frameworks. Some approaches adopt robotic arms to replace the interface invoking of mobile apps under test and use computer vision technologies to identify GUI elements. However, some challenges are unsolved. First, existing approaches assume that GUI screens are fixed so that they cannot be adapted to diverse systems with different screen conditions. Second, existing approaches use XY-plane robotic arms, which cannot flexibly simulate testing operations. Third, existing approaches ignore compatibility bugs and only focus on crash bugs. A more practical approach is required for the non-intrusive scenario. We propose a practical non-intrusive GUI testing framework with visual robotic arms. RoboTest integrates novel GUI screen and widget detection algorithms, adaptive to detecting screens of different sizes and then to extracting GUI widgets from the detected screens. Then, a set of testing operations is applied with a 4-DOF robotic arm, which effectively and flexibly simulates human testing operations. During app exploration, RoboTest integrates the Principle of Proximity-guided exploration strategy, choosing close widgets of the previous targets to reduce robotic arm movement overhead and improve exploration efficiency. RoboTest can effectively detect some compatibility bugs beyond crash bugs with a GUI comparison on different devices of the same test operations. We evaluate RoboTest with 20 mobile apps, with a case study on an embedded system. The results show that RoboTest can effectively, efficiently, and generally explore AUTs to find bugs and reduce exploration time overhead.

Open-loop stable limit cycles are foundational to the dynamics of legged robots. They impart a self-stabilizing character to the robot's gait, thus alleviating the need for compute-heavy feedback-based gait correction. This paper proposes a general approach to rapidly generate limit cycles with explicit stability constraints for a given dynamical system. In particular, we pose the problem of open-loop limit cycle stability as a single-stage constrained-optimization problem (COP), and use Direct Collocation to transcribe it into a nonlinear program (NLP) with closed-form expressions for constraints, objectives, and their gradients. The COP formulations of stability are developed based (1) on the spectral radius of a discrete return map, and (2) on the spectral radius of the system's monodromy matrix, where the spectral radius is bounded using different constraint-satisfaction formulations of the eigenvalue problem. We compare the performance and solution qualities of each approach, but specifically highlight the Schur decomposition of the monodromy matrix as a formulation which boasts wider applicability through weaker assumptions and attractive numerical convergence properties. Moreover, we present results from our experiments on a spring-loaded inverted pendulum model of a robot, where our method generated actuation trajectories for open-loop stable hopping in under 2 seconds (on the Intel Core i7-6700K), and produced energy-minimizing actuation trajectories even under tight stability constraints.

Profile-based intent detection and slot filling are important tasks aimed at reducing the ambiguity in user utterances by leveraging user-specific supporting profile information. However, research in these two tasks has not been extensively explored. To fill this gap, we propose a joint model, namely JPIS, designed to enhance profile-based intent detection and slot filling. JPIS incorporates the supporting profile information into its encoder and introduces a slot-to-intent attention mechanism to transfer slot information representations to intent detection. Experimental results show that our JPIS substantially outperforms previous profile-based models, establishing a new state-of-the-art performance in overall accuracy on the Chinese benchmark dataset ProSLU.

High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations.

The enormous amount of data to be represented using large graphs exceeds in some cases the resources of a conventional computer. Edges in particular can take up a considerable amount of memory as compared to the number of nodes. However, rigorous edge storage might not always be essential to be able to draw the needed conclusions. A similar problem takes records with many variables and attempts to extract the most discernible features. It is said that the ``dimension'' of this data is reduced. Following an approach with the same objective in mind, we can map a graph representation to a $k$-dimensional space and answer queries of neighboring nodes mainly by measuring Euclidean distances. The accuracy of our answers would decrease but would be compensated for by fuzzy logic which gives an idea about the likelihood of error. This method allows for reasonable representation in memory while maintaining a fair amount of useful information, and allows for concise embedding in $k$-dimensional Euclidean space as well as solving some problems without having to decompress the graph. Of particular interest is the case where $k=2$. Promising highly accurate experimental results are obtained and reported.

In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function. Approaches in this research area develop information models that capture all information relevant to interpret the requirements, effects and behavior of functions. These approaches are intended to overcome the heterogeneity resulting from the various types of processes and from the large number of different vendors. However, these models and associated methods do not offer solutions for automated process planning, i.e. finding a sequence of individual capabilities required to manufacture a certain product or to accomplish a mission using autonomous robots. Instead, this is a typical task for AI planning approaches, which unfortunately require a high effort to create the respective planning problem descriptions. In this paper, we present an approach that combines these two topics: Starting from a semantic capability model, an AI planning problem is automatically generated. The planning problem is encoded using Satisfiability Modulo Theories and uses an existing solver to find valid capability sequences including required parameter values. The approach also offers possibilities to integrate existing human expertise and to provide explanations for human operators in order to help understand planning decisions.

Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing literature on using Bayesian scalar-on-tensor regression techniques that use tensor-based representations for high-dimensional and spatially distributed covariates to predict continuous outcomes. However surprisingly, there is limited development on corresponding Bayesian classification methods relying on tensor-valued covariates. Standard approaches that vectorize the image are not desirable due to the loss of spatial structure, and alternate methods that use extracted features from the image in the predictive model may suffer from information loss. We propose a novel data augmentation-based Bayesian classification approach relying on tensor-valued covariates, with a focus on imaging predictors. We propose two data augmentation schemes, one resulting in a support vector machine (SVM) classifier, and another yielding a logistic regression classifier. While both types of classifiers have been proposed independently in literature, our contribution is to extend such existing methodology to accommodate high-dimensional tensor valued predictors that involve low rank decompositions of the coefficient matrix while preserving the spatial information in the image. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for implementing these methods. Simulation studies show significant improvements in classification accuracy and parameter estimation compared to routinely used classification methods. We further illustrate our method in a neuroimaging application using cortical thickness MRI data from Alzheimer's Disease Neuroimaging Initiative, with results displaying better classification accuracy throughout several classification tasks.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司