亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Face is one of the most widely employed traits for person recognition, even in many large-scale applications. Despite technological advancements in face recognition systems, they still face obstacles caused by pose, expression, occlusion, and aging variations. Owing to the COVID-19 pandemic, contactless identity verification has become exceedingly vital. To constrain the pandemic, people have started using face mask. Recently, few studies have been conducted on the effect of face mask on adult face recognition systems. However, the impact of aging with face mask on child subject recognition has not been adequately explored. Thus, the main objective of this study is analyzing the child longitudinal impact together with face mask and other covariates on face recognition systems. Specifically, we performed a comparative investigation of three top performing publicly available face matchers and a post-COVID-19 commercial-off-the-shelf (COTS) system under child cross-age verification and identification settings using our generated synthetic mask and no-mask samples. Furthermore, we investigated the longitudinal consequence of eyeglasses with mask and no-mask. The study exploited no-mask longitudinal child face dataset (i.e., extended Indian Child Longitudinal Face Dataset) that contains $26,258$ face images of $7,473$ subjects in the age group of $[2, 18]$ over an average time span of $3.35$ years. Due to the combined effects of face mask and face aging, the FaceNet, PFE, ArcFace, and COTS face verification system accuracies decrease approximately $25\%$, $22\%$, $18\%$, $12\%$, respectively.

相關內容

Micro-expression has emerged as a promising modality in affective computing due to its high objectivity in emotion detection. Despite the higher recognition accuracy provided by the deep learning models, there are still significant scope for improvements in micro-expression recognition techniques. The presence of micro-expressions in small-local regions of the face, as well as the limited size of available databases, continue to limit the accuracy in recognizing micro-expressions. In this work, we propose a facial micro-expression recognition model using 3D residual attention network named MERANet to tackle such challenges. The proposed model takes advantage of spatial-temporal attention and channel attention together, to learn deeper fine-grained subtle features for classification of emotions. Further, the proposed model encompasses both spatial and temporal information simultaneously using the 3D kernels and residual connections. Moreover, the channel features and spatio-temporal features are re-calibrated using the channel and spatio-temporal attentions, respectively in each residual module. Our attention mechanism enables the model to learn to focus on different facial areas of interest. The experiments are conducted on benchmark facial micro-expression datasets. A superior performance is observed as compared to the state-of-the-art for facial micro-expression recognition on benchmark data.

Doppelg\"angers (or lookalikes) usually yield an increased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non-mated comparison trials. In this work, we assess the impact of doppelg\"angers on the HDA Doppelg\"anger and Disguised Faces in The Wild databases using a state-of-the-art face recognition system. It is found that doppelg\"anger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, we propose a doppelg\"anger detection method which distinguishes doppelg\"angers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelg\"anger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelg\"anger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelg\"angers.

Metrics for evaluating generative models aim to measure the discrepancy between real and generated images. The often-used Frechet Inception Distance (FID) metric, for example, extracts "high-level" features using a deep network from the two sets. However, we find that the differences in "low-level" preprocessing, specifically image resizing and compression, can induce large variations and have unforeseen consequences. For instance, when resizing an image, e.g., with a bilinear or bicubic kernel, signal processing principles mandate adjusting prefilter width depending on the downsampling factor, to antialias to the appropriate bandwidth. However, commonly-used implementations use a fixed-width prefilter, resulting in aliasing artifacts. Such aliasing leads to corruptions in the feature extraction downstream. Next, lossy compression, such as JPEG, is commonly used to reduce the file size of an image. Although designed to minimally degrade the perceptual quality of an image, the operation also produces variations downstream. Furthermore, we show that if compression is used on real training images, FID can actually improve if the generated images are also subsequently compressed. This paper shows that choices in low-level image processing have been an underappreciated aspect of generative modeling. We identify and characterize variations in generative modeling development pipelines, provide recommendations based on signal processing principles, and release a reference implementation to facilitate future comparisons.

Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis.

In this work, we propose a special cascade network for image segmentation, which is based on the U-Net networks as building blocks and the idea of the iterative refinement. The model was mainly applied to achieve higher recognition quality for the task of finding borders of the optic disc and cup, which are relevant to the presence of glaucoma. Compared to a single U-Net and the state-of-the-art methods for the investigated tasks, very high segmentation quality has been achieved without a need for increasing the volume of datasets. Our experiments include comparison with the best-known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS, and evaluation on a private data set collected in collaboration with University of California San Francisco Medical School. The analysis of the architecture details is presented, and it is argued that the model can be employed for a broad scope of image segmentation problems of similar nature.

Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neural network speech synthesis system (a parallel VC system adapted for our setup) and a GAN-based parallel VC system. This is the first research to show that the performance of a nonparallel VC method can exceed that of state-of-the-art parallel VC methods.

Recognizing text from natural images is still a hot research topic in computer vision due to its various applications. Despite the enduring research of several decades on optical character recognition (OCR), recognizing texts from natural images is still a challenging task. This is because scene texts are often in irregular arrangements (curved, arbitrarily-oriented or seriously distorted), which have not yet been well addressed in the literature. Existing methods on text recognition mainly work with regular (horizontal and frontal) texts and cannot be trivially generalized to handle irregular texts. In this paper, we develop the arbitrary orientation network (AON) to capture the deep features of irregular texts (e.g. arbitrarily-oriented, perspective or curved), which are combined into an attention-based decoder to generate character sequence. The whole network can be trained end-to-end by using only images and word-level labels. Extensive experiments on various benchmarks, including the CUTE80, SVT-Perspective, IIIT5k, SVT and ICDAR datasets, show that the proposed AON-based method substantially outperforms the existing methods.

北京阿比特科技有限公司