亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Micro-expression has emerged as a promising modality in affective computing due to its high objectivity in emotion detection. Despite the higher recognition accuracy provided by the deep learning models, there are still significant scope for improvements in micro-expression recognition techniques. The presence of micro-expressions in small-local regions of the face, as well as the limited size of available databases, continue to limit the accuracy in recognizing micro-expressions. In this work, we propose a facial micro-expression recognition model using 3D residual attention network named MERANet to tackle such challenges. The proposed model takes advantage of spatial-temporal attention and channel attention together, to learn deeper fine-grained subtle features for classification of emotions. Further, the proposed model encompasses both spatial and temporal information simultaneously using the 3D kernels and residual connections. Moreover, the channel features and spatio-temporal features are re-calibrated using the channel and spatio-temporal attentions, respectively in each residual module. Our attention mechanism enables the model to learn to focus on different facial areas of interest. The experiments are conducted on benchmark facial micro-expression datasets. A superior performance is observed as compared to the state-of-the-art for facial micro-expression recognition on benchmark data.

相關內容

Attention機(ji)制(zhi)最(zui)早是(shi)在(zai)(zai)視覺圖(tu)像領域提出來的(de)(de),但是(shi)真正(zheng)火起來應該算(suan)是(shi)google mind團隊(dui)的(de)(de)這(zhe)篇論文(wen)《Recurrent Models of Visual Attention》[14],他(ta)們在(zai)(zai)RNN模(mo)型上使用(yong)了attention機(ji)制(zhi)來進行圖(tu)像分類。隨(sui)后,Bahdanau等人在(zai)(zai)論文(wen)《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用(yong)類似attention的(de)(de)機(ji)制(zhi)在(zai)(zai)機(ji)器翻(fan)譯任務上將(jiang)翻(fan)譯和對齊同時(shi)進行,他(ta)們的(de)(de)工作算(suan)是(shi)是(shi)第一個提出attention機(ji)制(zhi)應用(yong)到NLP領域中。接著類似的(de)(de)基于(yu)attention機(ji)制(zhi)的(de)(de)RNN模(mo)型擴(kuo)展(zhan)開始應用(yong)到各種NLP任務中。最(zui)近,如何在(zai)(zai)CNN中使用(yong)attention機(ji)制(zhi)也成為(wei)了大家的(de)(de)研究熱點。下圖(tu)表示了attention研究進展(zhan)的(de)(de)大概趨勢。

We propose a novel framework to learn 3D point cloud semantics from 2D multi-view image observations containing pose error. On the one hand, directly learning from the massive, unstructured and unordered 3D point cloud is computationally and algorithmically more difficult than learning from compactly-organized and context-rich 2D RGB images. On the other hand, both LiDAR point cloud and RGB images are captured in standard automated-driving datasets. This motivates us to conduct a "task transfer" paradigm so that 3D semantic segmentation benefits from aggregating 2D semantic cues, albeit pose noises are contained in 2D image observations. Among all difficulties, pose noise and erroneous prediction from 2D semantic segmentation approaches are the main challenges for the task transfer. To alleviate the influence of those factor, we perceive each 3D point using multi-view images and for each single image a patch observation is associated. Moreover, the semantic labels of a block of neighboring 3D points are predicted simultaneously, enabling us to exploit the point structure prior to further improve the performance. A hierarchical full attention network~(HiFANet) is designed to sequentially aggregates patch, bag-of-frames and inter-point semantic cues, with hierarchical attention mechanism tailored for different level of semantic cues. Also, each preceding attention block largely reduces the feature size before feeding to the next attention block, making our framework slim. Experiment results on Semantic-KITTI show that the proposed framework outperforms existing 3D point cloud based methods significantly, it requires much less training data and exhibits tolerance to pose noise. The code is available at //github.com/yuhanghe01/HiFANet.

Micro-expressions are spontaneous, unconscious facial movements that show people's true inner emotions and have great potential in related fields of psychological testing. Since the face is a 3D deformation object, the occurrence of an expression can arouse spatial deformation of the face, but limited by the available databases are 2D videos, lacking the description of 3D spatial information of micro-expressions. Therefore, we proposed a new micro-expression database containing 2D video sequences and 3D point clouds sequences. The database includes 373 micro-expressions sequences, and these samples were classified using the objective method based on facial action coding system, as well as the non-objective method that combines video contents and participants' self-reports. We extracted 2D and 3D features using the local binary patterns on three orthogonal planes (LBP-TOP) and curvature algorithms, respectively, and evaluated the classification accuracies of these two features and their fusion results with leave-one-subject-out (LOSO) and 10-fold cross-validation. Further, we performed various neural network algorithms for database classification, the results show that classification accuracies are improved by fusing 3D features than using only 2D features. The database offers original and cropped micro-expression samples, which will facilitate the exploration and research on 3D Spatio-temporal features of micro-expressions.

Stereo image super-resolution aims at enhancing the quality of super-resolution results by utilizing the complementary information provided by binocular systems. To obtain reasonable performance, most methods focus on finely designing modules, loss functions, and etc. to exploit information from another viewpoint. This has the side effect of increasing system complexity, making it difficult for researchers to evaluate new ideas and compare methods. This paper inherits a strong and simple image restoration model, NAFNet, for single-view feature extraction and extends it by adding cross attention modules to fuse features between views to adapt to binocular scenarios. The proposed baseline for stereo image super-resolution is noted as NAFSSR. Furthermore, training/testing strategies are proposed to fully exploit the performance of NAFSSR. Extensive experiments demonstrate the effectiveness of our method. In particular, NAFSSR outperforms the state-of-the-art methods on the KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets. With NAFSSR, we won 1st place in the NTIRE 2022 Stereo Image Super-resolution Challenge. Codes and models will be released at //github.com/megvii-research/NAFNet.

Recently, deep convolution neural networks (CNNs) steered face super-resolution methods have achieved great progress in restoring degraded facial details by jointly training with facial priors. However, these methods have some obvious limitations. On the one hand, multi-task joint learning requires additional marking on the dataset, and the introduced prior network will significantly increase the computational cost of the model. On the other hand, the limited receptive field of CNN will reduce the fidelity and naturalness of the reconstructed facial images, resulting in suboptimal reconstructed images. In this work, we propose an efficient CNN-Transformer Cooperation Network (CTCNet) for face super-resolution tasks, which uses the multi-scale connected encoder-decoder architecture as the backbone. Specifically, we first devise a novel Local-Global Feature Cooperation Module (LGCM), which is composed of a Facial Structure Attention Unit (FSAU) and a Transformer block, to promote the consistency of local facial detail and global facial structure restoration simultaneously. Then, we design an efficient Local Feature Refinement Module (LFRM) to enhance the local facial structure information. Finally, to further improve the restoration of fine facial details, we present a Multi-scale Feature Fusion Unit (MFFU) to adaptively fuse the features from different stages in the encoder procedure. Comprehensive evaluations on various datasets have assessed that the proposed CTCNet can outperform other state-of-the-art methods significantly.

Human affective behavior analysis has received much attention in human-computer interaction (HCI). In this paper, we introduce our submission to the CVPR 2022 Competition on Affective Behavior Analysis in-the-wild (ABAW). To fully exploit affective knowledge from multiple views, we utilize the multimodal features of spoken words, speech prosody, and facial expression, which are extracted from the video clips in the Aff-Wild2 dataset. Based on these features, we propose a unified transformer-based multimodal framework for Action Unit detection and also expression recognition. Specifically, the static vision feature is first encoded from the current frame image. At the same time, we clip its adjacent frames by a sliding window and extract three kinds of multimodal features from the sequence of images, audio, and text. Then, we introduce a transformer-based fusion module that integrates the static vision features and the dynamic multimodal features. The cross-attention module in the fusion module makes the output integrated features focus on the crucial parts that facilitate the downstream detection tasks. We also leverage some data balancing techniques, data augmentation techniques, and postprocessing methods to further improve the model performance. In the official test of ABAW3 Competition, our model ranks first in the EXPR and AU tracks. The extensive quantitative evaluations, as well as ablation studies on the Aff-Wild2 dataset, prove the effectiveness of our proposed method.

Recognizing the type of connected devices to a network helps to perform security policies. In smart grids, identifying massive number of grid metering terminals based on network traffic analysis is almost blank and existing research has not proposed a targeted end-to-end model to solve the flow classification problem. Therefore, we proposed a hierarchical terminal recognition approach that applies the details of grid data. We have formed a two-level model structure by segmenting the grid data, which uses the statistical characteristics of network traffic and the specific behavior characteristics of grid metering terminals. Moreover, through the selection and reconstruction of features, we combine three algorithms to achieve accurate identification of terminal types that transmit network traffic. We conduct extensive experiments on a real dataset containing three types of grid metering terminals, and the results show that our research has improved performance compared to common recognition models. The combination of an autoencoder, K-Means and GradientBoost algorithm achieved the best recognition rate with F1 value of 98.3%.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

北京阿比特科技有限公司