亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Currently, due to the advantages of light weight, simple deployment, multi-environment support, short startup time, scalability, and easy migration, container technology has been widely used in both cloud and edge/fog computing, and addresses the problem of device heterogeneity in different computing environments. On this basis, as one of the most popular container orchestration and management systems, Kubernetes almost dominates the cloud environment. However, since it is primarily designed for centralized resource management scenarios where computing resources are sufficient, the system is unstable in edge environments due to hardware limitations. Therefore, in order to realize container orchestration in the cloud and edge/fog hybrid computing environment, we propose a feasible approach to build a hybrid clustering based on K3s, which solves the problem that virtual instances in different environments cannot be connected due to IP addresses. We also propose three design patterns for deploying the FogBus2 framework into hybrid environments, including 1) Host Network Mode, 2) Proxy Server, and 3) Environment Variable.

相關內容

In order for a robot to perform a task, several algorithms need to be executed, sometimes, simultaneously. Algorithms can be run either on the robot itself or, upon request, be performed on cloud infrastructure. The term cloud infrastructure is used to describe hardware, storage, abstracted resources, and network resources related to cloud computing. Depending on the decisions on where to execute the algorithms, the overall execution time and necessary memory space for the robot will change accordingly. The price of a robot depends, among other things, on its memory capacity and computational power. We answer the question of how to keep a given performance and use a cheaper robot (lower resources) by assigning computational tasks to the cloud infrastructure, depending on memory, computational power, and communication constraints. Also, for a fixed robot, our model provides a way to have optimal overall performance. We provide a general model for the optimal decision of algorithm allocation under certain constraints. We exemplify the model with simulation results. The main advantage of our model is that it provides an optimal task allocation simultaneously for memory and time.

Keypoint detection is an essential building block for many robotic applications like motion capture and pose estimation. Historically, keypoints are detected using uniquely engineered markers such as checkerboards or fiducials. More recently, deep learning methods have been explored as they have the ability to detect user-defined keypoints in a marker-less manner. However, different manually selected keypoints can have uneven performance when it comes to detection and localization. An example of this can be found on symmetric robotic tools where DNN detectors cannot solve the correspondence problem correctly. In this work, we propose a new and autonomous way to define the keypoint locations that overcomes these challenges. The approach involves finding the optimal set of keypoints on robotic manipulators for robust visual detection and localization. Using a robotic simulator as a medium, our algorithm utilizes synthetic data for DNN training, and the proposed algorithm is used to optimize the selection of keypoints through an iterative approach. The results show that when using the optimized keypoints, the detection performance of the DNNs improved significantly. We further use the optimized keypoints for real robotic applications by using domain randomization to bridge the reality gap between the simulator and the physical world. The physical world experiments show how the proposed method can be applied to the wide-breadth of robotic applications that require visual feedback, such as camera-to-robot calibration, robotic tool tracking, and end-effector pose estimation.

Fog computing is a promising paradigm for real-time and mission-critical Internet of Things (IoT) applications. Regarding the high distribution, heterogeneity, and limitation of fog resources, applications should be placed in a distributed manner to fully utilize these resources. In this paper, we propose a linear formulation for assuring the different availability requirements of application services while maximizing the utilization of fog resources. We also compare three multiobjective evolutionary algorithms, namely MOPSO, NSGA-II, and MOEA/D for a trade-off between the mentioned optimization goals. The evaluation results in the iFogSim simulator demonstrate the efficiency of all three algorithms and a generally better behavior of MOPSO algorithm in terms of obtained objective values, application deadline satisfaction, and execution time.

Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an approach that iteratively improves an approximation to a Nash equilibrium through joint play. It accomplishes this by tracing a previously established homotopy that defines a continuum of equilibria for the game regularized with decaying levels of entropy. This continuum asymptotically approaches the limiting logit equilibrium, proven by McKelvey and Palfrey (1995) to be unique in almost all games, thereby partially circumventing the well-known equilibrium selection problem of many-player games. To encourage iterates to remain near this path, we efficiently minimize average deviation incentive via stochastic gradient descent, intelligently sampling entries in the payoff tensor as needed. Monte Carlo estimates of the stochastic gradient from joint play are biased due to the appearance of a nonlinear max operator in the objective, so we introduce additional innovations to the algorithm to alleviate gradient bias. The descent process can also be viewed as repeatedly constructing and reacting to a polymatrix approximation to the game. In these ways, our proposed approach, average deviation incentive descent with adaptive sampling (ADIDAS), is most similar to three classical approaches, namely homotopy-type, Lyapunov, and iterative polymatrix solvers. The lack of local convergence guarantees for biased gradient descent prevents guaranteed convergence to Nash, however, we demonstrate through extensive experiments the ability of this approach to approximate a unique Nash in normal-form games with as many as seven players and twenty one actions (several billion outcomes) that are orders of magnitude larger than those possible with prior algorithms.

Network slicing provides introduces customized and agile network deployment for managing different service types for various verticals under the same infrastructure. To cater to the dynamic service requirements of these verticals and meet the required quality-of-service (QoS) mentioned in the service-level agreement (SLA), network slices need to be isolated through dedicated elements and resources. Additionally, allocated resources to these slices need to be continuously monitored and intelligently managed. This enables immediate detection and correction of any SLA violation to support automated service assurance in a closed-loop fashion. By reducing human intervention, intelligent and closed-loop resource management reduces the cost of offering flexible services. Resource management in a network shared among verticals (potentially administered by different providers), would be further facilitated through open and standardized interfaces. Open radio access network (O-RAN) is perhaps the most promising RAN architecture that inherits all the aforementioned features, namely intelligence, open and standard interfaces, and closed control loop. Inspired by this, in this article we provide a closed-loop and intelligent resource provisioning scheme for O-RAN slicing to prevent SLA violations. In order to maintain realism, a real-world dataset of a large operator is used to train a learning solution for optimizing resource utilization in the proposed closed-loop service automation process. Moreover, the deployment architecture and the corresponding flow that are cognizant of the O-RAN requirements are also discussed.

Traditional ground wireless communication networks cannot provide high-quality services for artificial intelligence (AI) applications such as intelligent transportation systems (ITS) due to deployment, coverage and capacity issues. The space-air-ground integrated network (SAGIN) has become a research focus in the industry. Compared with traditional wireless communication networks, SAGIN is more flexible and reliable, and it has wider coverage and higher quality of seamless connection. However, due to its inherent heterogeneity, time-varying and self-organizing characteristics, the deployment and use of SAGIN still faces huge challenges, among which the orchestration of heterogeneous resources is a key issue. Based on virtual network architecture and deep reinforcement learning (DRL), we model SAGIN's heterogeneous resource orchestration as a multi-domain virtual network embedding (VNE) problem, and propose a SAGIN cross-domain VNE algorithm. We model the different network segments of SAGIN, and set the network attributes according to the actual situation of SAGIN and user needs. In DRL, the agent is acted by a five-layer policy network. We build a feature matrix based on network attributes extracted from SAGIN and use it as the agent training environment. Through training, the probability of each underlying node being embedded can be derived. In test phase, we complete the embedding process of virtual nodes and links in turn based on this probability. Finally, we verify the effectiveness of the algorithm from both training and testing.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

In recent years with the rise of Cloud Computing (CC), many companies providing services in the cloud, are empowered a new series of services to their catalog, such as data mining (DM) and data processing, taking advantage of the vast computing resources available to them. Different service definition proposals have been proposed to address the problem of describing services in CC in a comprehensive way. Bearing in mind that each provider has its own definition of the logic of its services, and specifically of DM services, it should be pointed out that the possibility of describing services in a flexible way between providers is fundamental in order to maintain the usability and portability of this type of CC services. The use of semantic technologies based on the proposal offered by Linked Data (LD) for the definition of services, allows the design and modelling of DM services, achieving a high degree of interoperability. In this article a schema for the definition of DM services on CC is presented, in addition are considered all key aspects of service in CC, such as prices, interfaces, Software Level Agreement, instances or workflow of experimentation, among others. The proposal presented is based on LD, so that it reuses other schemata obtaining a best definition of the service. For the validation of the schema, a series of DM services have been created where some of the best known algorithms such as \textit{Random Forest} or \textit{KMeans} are modeled as services.

Network Virtualization is one of the most promising technologies for future networking and considered as a critical IT resource that connects distributed, virtualized Cloud Computing services and different components such as storage, servers and application. Network Virtualization allows multiple virtual networks to coexist on same shared physical infrastructure simultaneously. One of the crucial keys in Network Virtualization is Virtual Network Embedding, which provides a method to allocate physical substrate resources to virtual network requests. In this paper, we investigate Virtual Network Embedding strategies and related issues for resource allocation of an Internet Provider(InP) to efficiently embed virtual networks that are requested by Virtual Network Operators(VNOs) who share the same infrastructure provided by the InP. In order to achieve that goal, we design a heuristic Virtual Network Embedding algorithm that simultaneously embeds virtual nodes and virtual links of each virtual network request onto physic infrastructure. Through extensive simulations, we demonstrate that our proposed scheme improves significantly the performance of Virtual Network Embedding by enhancing the long-term average revenue as well as acceptance ratio and resource utilization of virtual network requests compared to prior algorithms.

Cloud Robotics is one of the emerging area of robotics. It has created a lot of attention due to its direct practical implications on Robotics. In Cloud Robotics, the concept of cloud computing is used to offload computational extensive jobs of the robots to the cloud. Apart from this, additional functionalities can also be offered on run to the robots on demand. Simultaneous Localization and Mapping (SLAM) is one of the computational intensive algorithm in robotics used by robots for navigation and map building in an unknown environment. Several Cloud based frameworks are proposed specifically to address the problem of SLAM, DAvinCi, Rapyuta and C2TAM are some of those framework. In this paper, we presented a detailed review of all these framework implementation for SLAM problem.

北京阿比特科技有限公司