亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analytical dexterous grasping synthesis is often driven by grasp quality metrics. However, existing metrics possess many problems, such as being computationally expensive, physically inaccurate, and non-differentiable. Moreover, none of them can facilitate the synthesis of non-force-closure grasps, which account for a significant portion of task-oriented grasping such as lid screwing and button pushing. The main challenge behind all the above drawbacks is the difficulty in modeling the complex Grasp Wrench Space (GWS). In this work, we overcome this challenge by proposing a novel GWS estimator, thus enabling gradient-based task-oriented dexterous grasp synthesis for the first time. Our key contribution is a fast, accurate, and differentiable technique to estimate the GWS boundary with good physical interpretability by parallel sampling and mapping, which does not require iterative optimization. Second, based on our differentiable GWS estimator, we derive a task-oriented energy function to enable gradient-based grasp synthesis and a metric to evaluate non-force-closure grasps. Finally, we improve the previous dexterous grasp synthesis pipeline mainly by a novel technique to make nearest-point calculation differentiable, even on mesh edges and vertices. Extensive experiments are performed to verify the efficiency and effectiveness of our methods. Our GWS estimator can run in several milliseconds on GPUs with minimal memory cost, more than three orders of magnitude faster than the classic discretization-based method. Using this GWS estimator, we synthesize 0.1 million dexterous grasps to show that our pipeline can significantly outperform the SOTA method, even in task-unaware force-closure-grasp synthesis. For task-oriented grasp synthesis, we provide some qualitative results.

相關內容

Individual modules of programmable matter participate in their system's collective behavior by expending energy to perform actions. However, not all modules may have access to the external energy source powering the system, necessitating a local and distributed strategy for supplying energy to modules. In this work, we present a general energy distribution framework for the canonical amoebot model of programmable matter that transforms energy-agnostic algorithms into energy-constrained ones with equivalent behavior and an $\mathcal{O}(n^2)$-round runtime overhead -- even under an unfair adversary -- provided the original algorithms satisfy certain conventions. We then prove that existing amoebot algorithms for leader election (ICDCN 2023) and shape formation (Distributed Computing, 2023) are compatible with this framework and show simulations of their energy-constrained counterparts, demonstrating how other unfair algorithms can be generalized to the energy-constrained setting with relatively little effort. Finally, we show that our energy distribution framework can be composed with the concurrency control framework for amoebot algorithms (Distributed Computing, 2023), allowing algorithm designers to focus on the simpler energy-agnostic, sequential setting but gain the general applicability of energy-constrained, asynchronous correctness.

Optical phase conjugation (OPC) is a nonlinear technique used for counteracting wavefront distortions, with various applications ranging from imaging to beam focusing. Here, we present the design of a diffractive wavefront processor to approximate all-optical phase conjugation operation for input fields with phase aberrations. Leveraging deep learning, a set of passive diffractive layers was optimized to all-optically process an arbitrary phase-aberrated coherent field from an input aperture, producing an output field with a phase distribution that is the conjugate of the input wave. We experimentally validated the efficacy of this wavefront processor by 3D fabricating diffractive layers trained using deep learning and performing OPC on phase distortions never seen by the diffractive processor during its training. Employing terahertz radiation, our physical diffractive processor successfully performed the OPC task through a shallow spatially-engineered volume that axially spans tens of wavelengths. In addition to this transmissive OPC configuration, we also created a diffractive phase-conjugate mirror by combining deep learning-optimized diffractive layers with a standard mirror. Given its compact, passive and scalable nature, our diffractive wavefront processor can be used for diverse OPC-related applications, e.g., turbidity suppression and aberration correction, and is also adaptable to different parts of the electromagnetic spectrum, especially those where cost-effective wavefront engineering solutions do not exist.

Semantic communication (SC) aims to communicate reliably with minimal data transfer while simultaneously providing seamless connectivity to heterogeneous services and users. In this paper, a novel emergent SC (ESC) system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning. In order to design the language, the signaling game is solved using an alternating maximization between the communicating node's utilities. The emergent language helps create a context-aware transmit vocabulary (minimal semantic representation) and aids the reasoning process (enabling generalization to unseen scenarios) by splitting complex messages into simpler reasoning tasks for the receiver. The causal description at the transmitter is then modeled (a neural component) as a posterior distribution of the relevant attributes present in the data. Using the reconstructed causal state, the receiver evaluates a set of logical formulas (symbolic part) to execute its task. The nodes NeSy reasoning components are implemented by the recently proposed AI tool called Generative Flow Networks, and they are optimized for higher semantic reliability. The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity that are designed using rigorous algebraic properties from category theory thereby generalizing the metrics beyond Shannon's notion of uncertainty. Simulation results validate the ability of ESC to communicate efficiently (with reduced bits) and achieve better semantic reliability than conventional wireless and state-of-the-art systems that do not exploit causal reasoning capabilities.

Dyck reachability is a principled, graph-based formulation of a plethora of static analyses. Bidirected graphs are used for capturing dataflow through mutable heap data, and are usual formalisms of demand-driven points-to and alias analyses. The best (offline) algorithm runs in $O(m+n\cdot \alpha(n))$ time, where $n$ is the number of nodes and $m$ is the number of edges in the flow graph, which becomes $O(n^2)$ in the worst case. In the everyday practice of program analysis, the analyzed code is subject to continuous change, with source code being added and removed. On-the-fly static analysis under such continuous updates gives rise to dynamic Dyck reachability, where reachability queries run on a dynamically changing graph, following program updates. Naturally, executing the offline algorithm in this online setting is inadequate, as the time required to process a single update is prohibitively large. In this work we develop a novel dynamic algorithm for bidirected Dyck reachability that has $O(n\cdot \alpha(n))$ worst-case performance per update, thus beating the $O(n^2)$ bound, and is also optimal in certain settings. We also implement our algorithm and evaluate its performance on on-the-fly data-dependence and alias analyses, and compare it with two best known alternatives, namely (i) the optimal offline algorithm, and (ii) a fully dynamic Datalog solver. Our experiments show that our dynamic algorithm is consistently, and by far, the top performing algorithm, exhibiting speedups in the order of 1000X. The running time of each update is almost always unnoticeable to the human eye, making it ideal for the on-the-fly analysis setting.

There is currently a large gap in performance between the statistically rigorous methods like linear regression or additive splines and the powerful deep methods using neural networks. Previous works attempting to close this gap have failed to fully investigate the exponentially growing number of feature combinations which deep networks consider automatically during training. In this work, we develop a tractable selection algorithm to efficiently identify the necessary feature combinations by leveraging techniques in feature interaction detection. Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from these simple and interpretable models to fully connected neural networks. SIAN achieves competitive performance against state-of-the-art methods across multiple large-scale tabular datasets and consistently finds an optimal tradeoff between the modeling capacity of neural networks and the generalizability of simpler methods.

While current deep learning algorithms have been successful for a wide variety of artificial intelligence (AI) tasks, including those involving structured image data, they present deep neurophysiological conceptual issues due to their reliance on the gradients that are computed by backpropagation of errors (backprop). Gradients are required to obtain synaptic weight adjustments but require knowledge of feed-forward activities in order to conduct backward propagation, a biologically implausible process. This is known as the "weight transport problem". Therefore, in this work, we present a more biologically plausible approach towards solving the weight transport problem for image data. This approach, which we name the error kernel driven activation alignment (EKDAA) algorithm, accomplishes through the introduction of locally derived error transmission kernels and error maps. Like standard deep learning networks, EKDAA performs the standard forward process via weights and activation functions; however, its backward error computation involves adaptive error kernels that propagate local error signals through the network. The efficacy of EKDAA is demonstrated by performing visual-recognition tasks on the Fashion MNIST, CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract visual features from natural color images. Furthermore, in order to demonstrate its non-reliance on gradient computations, results are presented for an EKDAA trained CNN that employs a non-differentiable activation function.

The modeling and simulation of coupled neuromusculoskeletal-exoskeletal systems play a crucial role in human biomechanical analysis, as well as in the design and control of exoskeletons. However, conventional dynamic simulation frameworks have limitations due to their reliance on experimental data and their inability to capture comprehensive biomechanical signals and dynamic responses. To address these challenges, we introduce an optimization-based dynamic simulation framework that integrates a complete neuromusculoskeletal feedback loop, rigid-body dynamics, human-exoskeleton interaction, and foot-ground contact. Without relying on experimental measurements or empirical data, our framework employs a stepwise optimization process to determine muscle reflex parameters, taking into account multidimensional criteria. This allows the framework to generate a full range of kinematic and biomechanical signals, including muscle activations, muscle forces, joint torques, etc., which are typically challenging to measure experimentally. To validate the effectiveness of the framework, we compare the simulated results with experimental data obtained from a healthy subject wearing an exoskeleton while walking at different speeds (0.9, 1.0, and 1.1 m/s) and terrains (flat and uphill). The results demonstrate that our framework can effectively and accurately capture the qualitative differences in muscle activity associated with different functions, as well as the evolutionary patterns of muscle activity and kinematic signals under varying walking conditions. The simulation framework we propose has the potential to facilitate gait analysis and performance evaluation of coupled human-exoskeleton systems, as well as enable efficient and cost-effective testing of novel exoskeleton designs and control strategies.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司