亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.

相關內容

Differential privacy guarantees allow the results of a statistical analysis involving sensitive data to be released without compromising the privacy of any individual taking part. Achieving such guarantees generally requires the injection of noise, either directly into parameter estimates or into the estimation process. Instead of artificially introducing perturbations, sampling from Bayesian posterior distributions has been shown to be a special case of the exponential mechanism, producing consistent, and efficient private estimates without altering the data generative process. The application of current approaches has, however, been limited by their strong bounding assumptions which do not hold for basic models, such as simple linear regressors. To ameliorate this, we propose $\beta$D-Bayes, a posterior sampling scheme from a generalised posterior targeting the minimisation of the $\beta$-divergence between the model and the data generating process. This provides private estimation that is generally applicable without requiring changes to the underlying model and consistently learns the data generating parameter. We show that $\beta$D-Bayes produces more precise inference estimation for the same privacy guarantees, and further facilitates differentially private estimation via posterior sampling for complex classifiers and continuous regression models such as neural networks for the first time.

The Gaussian kernel and its traditional normalizations (e.g., row-stochastic) are popular approaches for assessing similarities between data points. Yet, they can be inaccurate under high-dimensional noise, especially if the noise magnitude varies considerably across the data, e.g., under heteroskedasticity or outliers. In this work, we investigate a more robust alternative -- the doubly stochastic normalization of the Gaussian kernel. We consider a setting where points are sampled from an unknown density on a low-dimensional manifold embedded in high-dimensional space and corrupted by possibly strong, non-identically distributed, sub-Gaussian noise. We establish that the doubly stochastic affinity matrix and its scaling factors concentrate around certain population forms, and provide corresponding finite-sample probabilistic error bounds. We then utilize these results to develop several tools for robust inference under general high-dimensional noise. First, we derive a robust density estimator that reliably infers the underlying sampling density and can substantially outperform the standard kernel density estimator under heteroskedasticity and outliers. Second, we obtain estimators for the pointwise noise magnitudes, the pointwise signal magnitudes, and the pairwise Euclidean distances between clean data points. Lastly, we derive robust graph Laplacian normalizations that accurately approximate various manifold Laplacians, including the Laplace Beltrami operator, improving over traditional normalizations in noisy settings. We exemplify our results in simulations and on real single-cell RNA-sequencing data. For the latter, we show that in contrast to traditional methods, our approach is robust to variability in technical noise levels across cell types.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

In studies ranging from clinical medicine to policy research, complete data are usually available from a population $\mathscr{P}$, but the quantity of interest is often sought for a related but different population $\mathscr{Q}$ which only has partial data. In this paper, we consider the setting that both outcome $Y$ and covariate ${\bf X}$ are available from $\mathscr{P}$ whereas only ${\bf X}$ is available from $\mathscr{Q}$, under the so-called label shift assumption, i.e., the conditional distribution of ${\bf X}$ given $Y$ remains the same across the two populations. To estimate the parameter of interest in $\mathscr{Q}$ via leveraging the information from $\mathscr{P}$, the following three ingredients are essential: (a) the common conditional distribution of ${\bf X}$ given $Y$, (b) the regression model of $Y$ given ${\bf X}$ in $\mathscr{P}$, and (c) the density ratio of $Y$ between the two populations. We propose an estimation procedure that only needs standard nonparametric technique to approximate the conditional expectations with respect to (a), while by no means needs an estimate or model for (b) or (c); i.e., doubly flexible to the possible model misspecifications of both (b) and (c). This is conceptually different from the well-known doubly robust estimation in that, double robustness allows at most one model to be misspecified whereas our proposal can allow both (b) and (c) to be misspecified. This is of particular interest in our setting because estimating (c) is difficult, if not impossible, by virtue of the absence of the $Y$-data in $\mathscr{Q}$. Furthermore, even though the estimation of (b) is sometimes off-the-shelf, it can face curse of dimensionality or computational challenges. We develop the large sample theory for the proposed estimator, and examine its finite-sample performance through simulation studies as well as an application to the MIMIC-III database.

This article inspects whether a multivariate distribution is different from a specified distribution or not, and it also tests the equality of two multivariate distributions. In the course of this study, a graphical tool-kit using well-known half-spaced depth based information criteria is proposed, which is a two-dimensional plot, regardless of the dimension of the data, and it is even useful in comparing high-dimensional distributions. The simple interpretability of the proposed graphical tool-kit motivates us to formulate test statistics to carry out the corresponding testing of hypothesis problems. It is established that the proposed tests based on the same information criteria are consistent, and moreover, the asymptotic distributions of the test statistics under contiguous/local alternatives are derived, which enable us to compute the asymptotic power of these tests. Furthermore, it is observed that the computations associated with the proposed tests are unburdensome. Besides, these tests perform better than many other tests available in the literature when data are generated from various distributions such as heavy tailed distributions, which indicates that the proposed methodology is robust as well. Finally, the usefulness of the proposed graphical tool-kit and tests is shown on two benchmark real data sets.

We consider a discrete distribution estimation problem under a local differential privacy (LDP) constraint in the presence of shared randomness. By exploiting the shared randomness, we suggest a new method for constructing LDP schemes which achieve the exactly optimal privacy-utility trade-off (PUT) with the communication cost of less than or equal to the input data size for any privacy regime. The main idea is to decompose a block design scheme by Park et al. (2023), based on the combinatorial concept called resolution. The LDP scheme decomposed from a block design scheme is called a resolution of the block design scheme, and it achieves the same PUT as the original block design scheme while requiring a less communication cost. We provide two resolutions of an exactly PUT-optimal block design scheme, called the Baranyai's resolution and the cyclic shift resolution, both requiring the communication cost of less than or equal to the input data size. In particular, we show that the Baranyai's resolution achieves the minimum communication cost among all the PUT-optimal resolutions of block design schemes. One drawback of the Baranyai's resolution is that it can be obtained through a recursive algorithm in general. In contrast, the cyclic shift resolution has an explicit structure, but its communication cost can be larger than that of Baranyai's resolution. To complement this, we also suggest resolutions of other block design schemes achieving the optimal PUT for some privacy budgets, which require the minimum communication cost as the Baranyai's resolution and have explicit structures as the cyclic shift resolution.

Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. Much research has been devoted to describing the predictive distribution (PD) $F(y|\mathbf{x})$ of a target variable $y \in \mathbb{R}$ given complex input features $\mathbf{x} \in \mathcal{X}$. However, off-the-shelf PDs (from, e.g., normalizing flows and Bayesian neural networks) often lack conditional calibration with the probability of occurrence of an event given input $\mathbf{x}$ being significantly different from the predicted probability. Current calibration methods do not fully assess and enforce conditionally calibrated PDs. Here we propose \texttt{Cal-PIT}, a method that addresses both PD diagnostics and recalibration by learning a single probability-probability map from calibration data. The key idea is to regress probability integral transform scores against $\mathbf{x}$. The estimated regression provides interpretable diagnostics of conditional coverage across the feature space. The same regression function morphs the misspecified PD to a re-calibrated PD for all $\mathbf{x}$. We benchmark our corrected prediction bands (a by-product of corrected PDs) against oracle bands and state-of-the-art predictive inference algorithms for synthetic data. We also provide results for two applications: (i) probabilistic nowcasting given sequences of satellite images, and (ii) conditional density estimation of galaxy distances given imaging data (so-called photometric redshift estimation). Our code is available as a Python package //github.com/lee-group-cmu/Cal-PIT .

User selection has become crucial for decreasing the communication costs of federated learning (FL) over wireless networks. However, centralized user selection causes additional system complexity. This study proposes a network intrinsic approach of distributed user selection that leverages the radio resource competition mechanism in random access. Taking the carrier sensing multiple access (CSMA) mechanism as an example of random access, we manipulate the contention window (CW) size to prioritize certain users for obtaining radio resources in each round of training. Training data bias is used as a target scenario for FL with user selection. Prioritization is based on the distance between the newly trained local model and the global model of the previous round. To avoid excessive contribution by certain users, a counting mechanism is used to ensure fairness. Simulations with various datasets demonstrate that this method can rapidly achieve convergence similar to that of the centralized user selection approach.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司