亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ultrasound is widely used in medical diagnostics allowing for accessible and powerful imaging but suffers from resolution limitations due to diffraction and the finite aperture of the imaging system, which restricts diagnostic use. The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process. Recovering high-resolution reflector distributions by removing image distortions induced by the convolution process improves image clarity and detail. Conventionally, deconvolution techniques attempt to rectify the imaging system's dependent PSF, working directly on the radio-frequency (RF) data. However, RF data is often not readily accessible. Therefore, we introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images. By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space. Our contribution consists of a novel methodology for retrieving a continuous echogenicity map directly from a B-mode image through a differentiable physics-based rendering pipeline for ultrasound resolution enhancement. We qualitatively and quantitatively evaluate our approach on synthetic data, demonstrating improvements over traditional methods in metrics such as PSNR and SSIM. Furthermore, we show qualitative enhancements on an ultrasound phantom and an in-vivo acquisition of a carotid artery.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

While tactile sensing is widely accepted as an important and useful sensing modality, its use pales in comparison to other sensory modalities like vision and proprioception. AnySkin addresses the critical challenges that impede the use of tactile sensing -- versatility, replaceability, and data reusability. Building on the simplistic design of ReSkin, and decoupling the sensing electronics from the sensing interface, AnySkin simplifies integration making it as straightforward as putting on a phone case and connecting a charger. Furthermore, AnySkin is the first uncalibrated tactile-sensor with cross-instance generalizability of learned manipulation policies. To summarize, this work makes three key contributions: first, we introduce a streamlined fabrication process and a design tool for creating an adhesive-free, durable and easily replaceable magnetic tactile sensor; second, we characterize slip detection and policy learning with the AnySkin sensor; and third, we demonstrate zero-shot generalization of models trained on one instance of AnySkin to new instances, and compare it with popular existing tactile solutions like DIGIT and ReSkin. Videos of experiments, fabrication details and design files can be found on //any-skin.github.io/

Knowledge distillation has become widely recognized for its ability to transfer knowledge from a large teacher network to a compact and more streamlined student network. Traditional knowledge distillation methods primarily follow a teacher-oriented paradigm that imposes the task of learning the teacher's complex knowledge onto the student network. However, significant disparities in model capacity and architectural design hinder the student's comprehension of the complex knowledge imparted by the teacher, resulting in sub-optimal performance. This paper introduces a novel perspective emphasizing student-oriented and refining the teacher's knowledge to better align with the student's needs, thereby improving knowledge transfer effectiveness. Specifically, we present the Student-Oriented Knowledge Distillation (SoKD), which incorporates a learnable feature augmentation strategy during training to refine the teacher's knowledge of the student dynamically. Furthermore, we deploy the Distinctive Area Detection Module (DAM) to identify areas of mutual interest between the teacher and student, concentrating knowledge transfer within these critical areas to avoid transferring irrelevant information. This customized module ensures a more focused and effective knowledge distillation process. Our approach, functioning as a plug-in, could be integrated with various knowledge distillation methods. Extensive experimental results demonstrate the efficacy and generalizability of our method.

Robust estimation is essential in computer vision, robotics, and navigation, aiming to minimize the impact of outlier measurements for improved accuracy. We present a fast algorithm for Geman-McClure robust estimation, FracGM, leveraging fractional programming techniques. This solver reformulates the original non-convex fractional problem to a convex dual problem and a linear equation system, iteratively solving them in an alternating optimization pattern. Compared to graduated non-convexity approaches, this strategy exhibits a faster convergence rate and better outlier rejection capability. In addition, the global optimality of the proposed solver can be guaranteed under given conditions. We demonstrate the proposed FracGM solver with Wahba's rotation problem and 3-D point-cloud registration along with relaxation pre-processing and projection post-processing. Compared to state-of-the-art algorithms, when the outlier rates increase from 20% to 80%, FracGM shows 53% and 88% lower rotation and translation increases. In real-world scenarios, FracGM achieves better results in 13 out of 18 outcomes, while having a 19.43% improvement in the computation time.

Although digital methods have significantly advanced morphology, practitioners are still challenged to understand and process tomographic specimen data. As automated processing of fossil data remains insufficient, morphologists still engage in intensive manual work to prepare digital fossils for research objectives. We present an open-source tool that enables morphologists to explore tomographic data similarly to the physical workflows that traditional fossil preparators experience in the field. We assessed the usability of our prototype for virtual fossil preparation and its accompanying tasks in the digital preparation workflow. Our findings indicate that integrating haptics into the virtual preparation workflow enhances the understanding of the morphology and material properties of working specimens. Our design's visuohaptic sculpting of fossil volumes was deemed straightforward and an improvement over current tomographic data processing methods.

Volatile memristors have recently gained popularity as promising devices for neuromorphic circuits, capable of mimicking the leaky function of neurons and offering advantages over capacitor-based circuits in terms of power dissipation and area. Additionally, volatile memristors are useful as selector devices and for hardware security circuits such as physical unclonable functions. To facilitate the design and simulation of circuits, a compact behavioral model is essential. This paper proposes V-VTEAM, a compact, simple, general, and flexible behavioral model for volatile memristors, inspired by the VTEAM nonvolatile memristor model and developed in MATLAB. The validity of the model is demonstrated by fitting it to an ion drift/diffusion-based Ag/SiOx/C/W volatile memristor, achieving a relative root mean error square of 4.5%.

In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.

Weakly-supervised medical image segmentation is a challenging task that aims to reduce the annotation cost while keep the segmentation performance. In this paper, we present a novel framework, SimTxtSeg, that leverages simple text cues to generate high-quality pseudo-labels and study the cross-modal fusion in training segmentation models, simultaneously. Our contribution consists of two key components: an effective Textual-to-Visual Cue Converter that produces visual prompts from text prompts on medical images, and a text-guided segmentation model with Text-Vision Hybrid Attention that fuses text and image features. We evaluate our framework on two medical image segmentation tasks: colonic polyp segmentation and MRI brain tumor segmentation, and achieve consistent state-of-the-art performance. Source code is available at: //github.com/xyx1024/SimTxtSeg.

We explore the application of uncertainty quantification methods to agent-based models (ABMs) using a simple sheep and wolf predator-prey model. This work serves as a tutorial on how techniques like emulation can be powerful tools in this context. We also highlight the importance of advanced statistical methods in effectively utilising computationally expensive ABMs. Specifically, we implement stochastic Gaussian processes, Gaussian process classification, sequential design, and history matching to address uncertainties in model input parameters and outputs. Our results show that these methods significantly enhance the robustness, accuracy, and predictive power of ABMs.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

北京阿比特科技有限公司