The arboricity of a graph is the minimum number of forests needed to cover all edges of the graph. In this paper, we study the arboricity from a game theoretic perspective and consider cost sharing in the minimum forest cover problem. We introduce the arboricity game as a cooperative cost game defined on a graph, where the players are edges and the cost of each coalition is the arboricity of the subgraph induced by the coalition. We study properties of the core and propose an efficient algorithm for computing the nucleolus when the core is nonempty. To compute the nucleolus, we introduce the prime partition of a graph, which decomposes the edge set into a partially ordered set defined from all minimal densest minors and their invariant precedence relation. For any core allocation of arboricity games, all edges from the same set of the prime partition share the same value. Thus the prime partition enables us to simplify the variables and constraints in linear programs of Maschler's scheme and to compute the nucleolus of arboricity games in polynomial time when the core is nonempty. Besides, the prime partition provides an analogous graph decomposition to the celebrated core decomposition and the density-friendly decomposition, which may be of independent interest.
The concept of Nash equilibrium enlightens the structure of rational behavior in multi-agent settings. However, the concept is as helpful as one may compute it efficiently. We introduce the Cut-and-Play, an algorithm to compute Nash equilibria for non-cooperative simultaneous games where each player's objective is linear in their variables and bilinear in the other players' variables. Using the rich theory of integer programming, we alternate between constructing (i.) increasingly tighter outer approximations of the convex hull of each player's feasible set -- by using branching and cutting plane methods -- and (ii.) increasingly better inner approximations of these hulls -- by finding extreme points and rays of the convex hulls. In particular, we prove the correctness of our algorithm when these convex hulls are polyhedra. Our algorithm allows us to leverage the mixed integer programming technology to compute equilibria for a large class of games. Further, we integrate existing cutting plane families inside the algorithm, significantly speeding up equilibria computation. We showcase a set of extensive computational results for Integer Programming Games and simultaneous games among bilevel leaders. In both cases, our framework outperforms the state-of-the-art in computing time and solution quality.
In 1961, Gomory and Hu showed that the max-flow values of all $n\choose 2$ pairs of vertices in an undirected graph can be computed using only $n-1$ calls to any max-flow algorithm. Even assuming a linear-time max-flow algorithm, this yields a running time of $O(n^3)$ for this problem. We break this 60-year old barrier by giving an $\tilde{O}(n^{23/8})$-time algorithm for the Gomory-Hu tree problem. Our result is unconditional, i.e., it does not rely on a linear-time max-flow algorithm.
We introduce the category of information structures, whose objects are suitable diagrams of measurable sets that encode the possible outputs of a given family of observables and their mutual relationships of refinement; they serve as mathematical models of contextuality in classical and quantum settings. Each information structure can be regarded as a ringed site with trivial topology; the structure ring is generated by the observables themselves and its multiplication corresponds to joint measurement. We extend Baudot and Bennequin's definition of information cohomology to this setting, as a derived functor in the category of modules over the structure ring, and show explicitly that the bar construction gives a projective resolution in that category, recovering in this way the cochain complexes previously considered in the literature. Finally, we study the particular case of a one-parameter family of coefficients made of functions of probability distributions. The only 1-cocycles are Shannon entropy or Tsallis $\alpha$-entropy, depending on the value of the parameter.
We consider the problem of parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We first establish consistency and asymptotic normality of the offline maximum likelihood estimator for the interacting particle system in the limit as the number of particles $N\rightarrow\infty$. We then propose an online estimator for the parameters of the McKean-Vlasov SDE, which evolves according to a continuous-time stochastic gradient descent algorithm on the asymptotic log-likelihood of the interacting particle system. We prove that this estimator converges in $\mathbb{L}^1$ to the stationary points of the asymptotic log-likelihood of the McKean-Vlasov SDE in the joint limit as $N\rightarrow\infty$ and $t\rightarrow\infty$, under suitable assumptions which guarantee ergodicity and uniform-in-time propagation of chaos. We then demonstrate, under the additional assumption of global strong concavity, that our estimator converges in $\mathbb{L}^2$ to the unique maximiser of this asymptotic log-likelihood function, and establish an $\mathbb{L}^2$ convergence rate. We also obtain analogous results under the assumption that, rather than observing multiple trajectories of the interacting particle system, we instead observe multiple independent replicates of the McKean-Vlasov SDE itself or, less realistically, a single sample path of the McKean-Vlasov SDE and its law. Our theoretical results are demonstrated via two numerical examples, a linear mean field model and a stochastic opinion dynamics model.
We consider the query complexity of finding a local minimum of a function defined on a graph, where at most $k$ rounds of interaction with the oracle are allowed. Rounds model parallel settings, where each query takes resources to complete and is executed on a separate processor. Thus the query complexity in $k$ rounds informs how many processors are needed to achieve a parallel time of $k$. We focus on the d-dimensional grid $[n]^d$, where the dimension $d$ is a constant, and consider two regimes for the number of rounds: constant and polynomial in n. We give algorithms and lower bounds that characterize the trade-off between the number of rounds of adaptivity and the query complexity of local search. When the number of rounds $k$ is constant, we show that the query complexity of local search in $k$ rounds is $\Theta\bigl(n^{\frac{d^{k+1} - d^k}{d^k - 1}}\bigl)$, for both deterministic and randomized algorithms. When the number of rounds is polynomial, i.e. $k = n^{\alpha}$ for $0 < \alpha < d/2$, the randomized query complexity is $\Theta\left(n^{d-1 - \frac{d-2}{d}\alpha}\right)$ for all $d \geq 5$. For $d=3$ and $d=4$, we show the same upper bound expression holds and give almost matching lower bounds. The local search analysis also enables us to characterize the query complexity of computing a Brouwer fixed point in rounds. Our proof technique for lower bounding the query complexity in rounds may be of independent interest as an alternative to the classical relational adversary method of Aaronson from the fully adaptive setting.
Branchwidth determines how graphs, and more generally, arbitrary connectivity (basically symmetric and submodular) functions could be decomposed into a tree-like structure by specific cuts. We develop a general framework for designing fixed-parameter tractable (FPT) 2-approximation algorithms for branchwidth of connectivity functions. The first ingredient of our framework is combinatorial. We prove a structural theorem establishing that either a sequence of particular refinement operations could decrease the width of a branch decomposition or that the width of the decomposition is already within a factor of 2 from the optimum. The second ingredient is an efficient implementation of the refinement operations for branch decompositions that support efficient dynamic programming. We present two concrete applications of our general framework. $\bullet$ An algorithm that for a given $n$-vertex graph $G$ and integer $k$ in time $2^{2^{O(k)}} n^2$ either constructs a rank decomposition of $G$ of width at most $2k$ or concludes that the rankwidth of $G$ is more than $k$. It also yields a $(2^{2k+1}-1)$-approximation algorithm for cliquewidth within the same time complexity, which in turn, improves to $f(k)n^2$ the running times of various algorithms on graphs of cliquewidth $k$. Breaking the "cubic barrier" for rankwidth and cliquewidth was an open problem in the area. $\bullet$ An algorithm that for a given $n$-vertex graph $G$ and integer $k$ in time $2^{O(k)} n$ either constructs a branch decomposition of $G$ of width at most $2k$ or concludes that the branchwidth of $G$ is more than $k$. This improves over the 3-approximation that follows from the recent treewidth 2-approximation of Korhonen [FOCS 2021].
Deep hierarchical reinforcement learning has gained a lot of attention in recent years due to its ability to produce state-of-the-art results in challenging environments where non-hierarchical frameworks fail to learn useful policies. However, as problem domains become more complex, deep hierarchical reinforcement learning can become inefficient, leading to longer convergence times and poor performance. We introduce the Deep Nested Agent framework, which is a variant of deep hierarchical reinforcement learning where information from the main agent is propagated to the low level $nested$ agent by incorporating this information into the nested agent's state. We demonstrate the effectiveness and performance of the Deep Nested Agent framework by applying it to three scenarios in Minecraft with comparisons to a deep non-hierarchical single agent framework, as well as, a deep hierarchical framework.
We consider the multi-agent reinforcement learning setting with imperfect information in which each agent is trying to maximize its own utility. The reward function depends on the hidden state (or goal) of both agents, so the agents must infer the other players' hidden goals from their observed behavior in order to solve the tasks. We propose a new approach for learning in these domains: Self Other-Modeling (SOM), in which an agent uses its own policy to predict the other agent's actions and update its belief of their hidden state in an online manner. We evaluate this approach on three different tasks and show that the agents are able to learn better policies using their estimate of the other players' hidden states, in both cooperative and adversarial settings.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.