亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biological data in digital form has become a, if not the, driving force behind innovations in biology, medicine, and the environment. No study and no model would be complete without access to digital data (including text) collected by others and available in public repositories. With this ascent in the fundamental importance of data for reproducible scientific progress has come a troubling paradox.

相關內容

This paper documents a year-long experiment to "profile" the process of learning a programming language: gathering data to understand what makes a language hard to learn, and using that data to improve the learning process. We added interactive quizzes to The Rust Programming Language, the official textbook for learning Rust. Over 13 months, 62,526 readers answered questions 1,140,202 times. First, we analyze the trajectories of readers. We find that many readers drop-out of the book early when faced with difficult language concepts like Rust's ownership types. Second, we use classical test theory and item response theory to analyze the characteristics of quiz questions. We find that better questions are more conceptual in nature, such as asking why a program does not compile vs. whether a program compiles. Third, we performed 12 interventions into the book to help readers with difficult questions. We find that on average, interventions improved quiz scores on the targeted questions by +20%. Fourth, we show that our technique can likely generalize to languages with smaller user bases by simulating our statistical inferences on small N. These results demonstrate that quizzes are a simple and useful technique for understanding language learning at all scales.

In the modern world, the amount of visual data recorded has been rapidly increasing. In many cases, data is stored in geographically distinct locations and thus requires a large amount of time and space to consolidate. Sometimes, there are also regulations for privacy protection which prevent data consolidation. In this work, we present federated implementations for object detection and recognition using a federated Faster R-CNN (FRCNN) and image segmentation using a federated Fully Convolutional Network (FCN). Our FRCNN was trained on 5000 examples of the COCO2017 dataset while our FCN was trained on the entire train set of the CamVid dataset. The proposed federated models address the challenges posed by the increasing volume and decentralized nature of visual data, offering efficient solutions in compliance with privacy regulations.

While modern machine learning models rely on increasingly large training datasets, data is often limited in privacy-sensitive domains. Generative models trained with differential privacy (DP) on sensitive data can sidestep this challenge, providing access to synthetic data instead. We build on the recent success of diffusion models (DMs) and introduce Differentially Private Diffusion Models (DPDMs), which enforce privacy using differentially private stochastic gradient descent (DP-SGD). We investigate the DM parameterization and the sampling algorithm, which turn out to be crucial ingredients in DPDMs, and propose noise multiplicity, a powerful modification of DP-SGD tailored to the training of DMs. We validate our novel DPDMs on image generation benchmarks and achieve state-of-the-art performance in all experiments. Moreover, on standard benchmarks, classifiers trained on DPDM-generated synthetic data perform on par with task-specific DP-SGD-trained classifiers, which has not been demonstrated before for DP generative models. Project page and code: //nv-tlabs.github.io/DPDM.

Background and Objective: The success of neural networks in a number of image processing tasks has motivated their application in image reconstruction problems in computed tomography (CT). While progress has been made in this area, the lack of stability and theoretical guarantees for accuracy, together with the scarcity of high-quality training data for specific imaging domains pose challenges for many CT applications. In this paper, we present a framework for iterative reconstruction (IR) in CT that leverages the hierarchical structure of neural networks, without the need for training. Our framework incorporates this structural information as a deep image prior (DIP), and uses a novel residual back projection (RBP) connection that forms the basis for our iterations. Methods: We propose using an untrained U-net in conjunction with a novel residual back projection to minimize an objective function and achieve high-accuracy reconstruction. In each iteration, the weights of the untrained U-net are optimized, and the output of the U-net in the current iteration is used to update the input of the U-net in the next iteration through the aforementioned RBP connection. Results: Experimental results demonstrate that the RBP-DIP framework offers improvements over other state-of-the-art conventional IR methods, as well as pre-trained and untrained models with similar network structures under multiple conditions. These improvements are particularly significant in the few-view, limited-angle, and low-dose imaging configurations. Conclusions: Applying to both parallel and fan beam X-ray imaging, our framework shows significant improvement under multiple conditions. Furthermore, the proposed framework requires no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geometry, and imaged object).

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司