We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability. The commonly adopted compression schemes introduce information loss into local data while improving communication efficiency, and it remains an open problem whether such discrete-valued mechanisms provide any privacy protection. In this paper, we study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP). More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms, including the binomial noise and the binomial mechanisms that are proposed for privacy preservation, and the sign-based methods that are proposed for data compression, in closed-form expressions. We further investigate the amplification in privacy by sparsification and propose a ternary stochastic compressor. By leveraging compression for privacy amplification, we improve the existing methods by removing the dependency of accuracy (in terms of mean square error) on communication cost in the popular use case of distributed mean estimation, therefore breaking the three-way tradeoff between privacy, communication, and accuracy. Finally, we discuss the Byzantine resilience of the proposed mechanism and its application in federated learning.
The rise of cloud computing has spurred a trend of transferring data storage and computational tasks to the cloud. To protect confidential information such as customer data and business details, it is essential to encrypt this sensitive data before cloud storage. Implementing encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues. Moreover, to facilitate the execution of data mining algorithms on the cloud-stored data, the encryption needs to be compatible with domain computation. The $k$-nearest neighbor ($k$-NN) computation for a specific query vector is widely used in fields like location-based services. Sanyashi et al. (ICISS 2023) proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud by utilizing Asymmetric Scalar-Product-Preserving Encryption (ASPE). In this work, we identify a significant vulnerability in the aforementioned encryption scheme of Sanyashi et al. Specifically, we give an efficient algorithm and also empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA).
Opinion diffusion is a crucial phenomenon in social networks, often underlying the way in which a collective of agents develops a consensus on relevant decisions. The voter model is a well-known theoretical model to study opinion spreading in social networks and structured populations. Its simplest version assumes that an updating agent will adopt the opinion of a neighboring agent chosen at random. The model allows us to study, for example, the probability that a certain opinion will fixate into a consensus opinion, as well as the expected time it takes for a consensus opinion to emerge. Standard voter models are oblivious to the opinions held by the agents involved in the opinion adoption process. We propose and study a context-dependent opinion spreading process on an arbitrary social graph, in which the probability that an agent abandons opinion $a$ in favor of opinion $b$ depends on both $a$ and $b$. We discuss the relations of the model with existing voter models and then derive theoretical results for both the fixation probability and the expected consensus time for two opinions, for both the synchronous and the asynchronous update models.
Recently, sign-aware graph recommendation has drawn much attention as it will learn users' negative preferences besides positive ones from both positive and negative interactions (i.e., links in a graph) with items. To accommodate the different semantics of negative and positive links, existing works utilize two independent encoders to model users' positive and negative preferences, respectively. However, these approaches cannot learn the negative preferences from high-order heterogeneous interactions between users and items formed by multiple links with different signs, resulting in inaccurate and incomplete negative user preferences. To cope with these intractable issues, we propose a novel \textbf{L}ight \textbf{S}igned \textbf{G}raph Convolution Network specifically for \textbf{Rec}ommendation (\textbf{LSGRec}), which adopts a unified modeling approach to simultaneously model high-order users' positive and negative preferences on a signed user-item interaction graph. Specifically, for the negative preferences within high-order heterogeneous interactions, first-order negative preferences are captured by the negative links, while high-order negative preferences are propagated along positive edges. Then, recommendation results are generated based on positive preferences and optimized with negative ones. Finally, we train representations of users and items through different auxiliary tasks. Extensive experiments on three real-world datasets demonstrate that our method outperforms existing baselines regarding performance and computational efficiency. Our code is available at \url{//anonymous.4open.science/r/LSGRec-BB95}.
The creation of high-quality human-labeled image-caption datasets presents a significant bottleneck in the development of Visual-Language Models (VLMs). We propose a novel approach that leverages the strengths of Large Language Models (LLMs) and image generation models to create synthetic image-text pairs for efficient and effective VLM training. Our method employs pretraining a text-to-image model to synthesize image embeddings starting from captions generated by an LLM. These synthetic pairs are then used to train a VLM. Extensive experiments demonstrate that the VLM trained with synthetic data exhibits comparable performance on image captioning, while requiring a fraction of the data used by models trained solely on human-annotated data. In particular, we outperform the baseline by 17% through augmentation with a synthetic dataset. Furthermore, we show that synthesizing in the image embedding space is 25% faster than in the pixel space. This research introduces a promising technique for generating large-scale, customizable image datasets, leading to enhanced VLM performance and wider applicability across various domains, all with improved data efficiency and resource utilization.
Deep discriminative approaches like random forests and deep neural networks have recently found applications in many important real-world scenarios. However, deploying these learning algorithms in safety-critical applications raises concerns, particularly when it comes to ensuring confidence calibration for both in-distribution and out-of-distribution data points. Many popular methods for in-distribution (ID) calibration, such as isotonic regression and Platt's sigmoidal regression, exhibit excellent ID calibration performance. However, these methods are not calibrated for the entire feature space, leading to overconfidence in the case of out-of-distribution (OOD) samples. On the other end of the spectrum, existing out-of-distribution (OOD) calibration methods generally exhibit poor in-distribution (ID) calibration. In this paper, we address ID and OOD calibration problems jointly. We leveraged the fact that deep models, including both random forests and deep-nets, learn internal representations which are unions of polytopes with affine activation functions to conceptualize them both as partitioning rules of the feature space. We replace the affine function in each polytope populated by the training data with a Gaussian kernel. We propose sufficient conditions for our proposed methods to be consistent estimators of the corresponding class conditional densities. Moreover, our experiments on both tabular and vision benchmarks show that the proposed approaches obtain well-calibrated posteriors while mostly preserving or improving the classification accuracy of the original algorithm for in-distribution region, and extrapolates beyond the training data to handle out-of-distribution inputs appropriately.
In this work, we present 3DCoMPaT$^{++}$, a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT$^{++}$ covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet$^{++}$ model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.