亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The cross-correlation problem is a classic problem in sequence design. In this paper we compute the cross-correlation distribution of the Niho-type decimation $d=3(p^m-1)+1$ over $\mathrm{GF}(p^{2m})$ for any prime $p \ge 5$. Previously this problem was solved by Xia et al. only for $p=2$ and $p=3$ in a series of papers. The main difficulty of this problem for $p \ge 5$, as pointed out by Xia et al., is to count the number of codewords of "pure weight" 5 in $p$-ary Zetterberg codes. It turns out this counting problem can be transformed by the MacWilliams identity into counting codewords of weight at most 5 in $p$-ary Melas codes, the most difficult of which is related to a K3 surface well studied in the literature and can be computed. When $p \ge 7$, the theory of elliptic curves over finite fields also plays an important role in the resolution of this problem.

相關內容

In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.

This paper analyzes a $\theta$-method and 3-point time filter. This approach adds one additional line of code to the existing source code of $\theta$-method. We prove the method's $0$-stability, accuracy, and $A$-stability for both constant time step and variable time step. Some numerical tests are performed to validate the theoretical results.

We present a $O(1)$-approximate fully dynamic algorithm for the $k$-median and $k$-means problems on metric spaces with amortized update time $\tilde O(k)$ and worst-case query time $\tilde O(k^2)$. We complement our theoretical analysis with the first in-depth experimental study for the dynamic $k$-median problem on general metrics, focusing on comparing our dynamic algorithm to the current state-of-the-art by Henzinger and Kale [ESA'20]. Finally, we also provide a lower bound for dynamic $k$-median which shows that any $O(1)$-approximate algorithm with $\tilde O(\text{poly}(k))$ query time must have $\tilde \Omega(k)$ amortized update time, even in the incremental setting.

In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.

We introduce and analyse a family of hash and predicate functions that are more likely to produce collisions for small reducible configurations of vectors. These may offer practical improvements to lattice sieving for short vectors. In particular, in one asymptotic regime the family exhibits significantly different convergent behaviour than existing hash functions and predicates.

This paper will suggest a new finite element method to find a $P^4$-velocity and a $P^3$-pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a $P^4$-velocity. Then, using the calculated velocity, a locally calculable $P^3$-pressure will be defined component-wisely. The resulting $P^3$-pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the $P^4$-velocity. Besides, the method overcomes the problem of singular vertices or corners.

In this paper we propose a local projector for truncated hierarchical B-splines (THB-splines). The local THB-spline projector is an adaptation of the B\'ezier projector proposed by Thomas et al. (Comput Methods Appl Mech Eng 284, 2015) for B-splines and analysis-suitable T-splines (AS T-splines). For THB-splines, there are elements on which the restrictions of THB-splines are linearly dependent, contrary to B-splines and AS T-splines. Therefore, we cluster certain local mesh elements together such that the THB-splines with support over these clusters are linearly independent, and the B\'ezier projector is adapted to use these clusters. We introduce general extensions for which optimal convergence is shown theoretically and numerically. In addition, a simple adaptive refinement scheme is introduced and compared to Giust et al. (Comput. Aided Geom. Des. 80, 2020), where we find that our simple approach shows promise.

The paper presents a spectral representation for general type two-sided discrete time signals from $\ell_\infty$, i.e for all bounded discrete time signals, including signals that do not vanish at $\pm\infty$. This representation allows to extend on the general type signals from $\ell_\infty$ the notions of transfer functions, spectrum gaps, and filters, and to obtain some frequency conditions of predictability and data recoverability.

We construct a monotone continuous $Q^1$ finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint.

In the online packet scheduling problem with deadlines (PacketSchD, for short), the goal is to schedule transmissions of packets that arrive over time in a network switch and need to be sent across a link. Each packet has a deadline, representing its urgency, and a non-negative weight, that represents its priority. Only one packet can be transmitted in any time slot, so if the system is overloaded, some packets will inevitably miss their deadlines and be dropped. In this scenario, the natural objective is to compute a transmission schedule that maximizes the total weight of packets that are successfully transmitted. The problem is inherently online, with the scheduling decisions made without the knowledge of future packet arrivals. The central problem concerning PacketSchD, that has been a subject of intensive study since 2001, is to determine the optimal competitive ratio of online algorithms, namely the worst-case ratio between the optimum total weight of a schedule (computed by an offline algorithm) and the weight of a schedule computed by a (deterministic) online algorithm. We solve this open problem by presenting a $\phi$-competitive online algorithm for PacketSchD (where $\phi\approx 1.618$ is the golden ratio), matching the previously established lower bound.

北京阿比特科技有限公司