亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Trajectory prediction is, naturally, a key task for vehicle autonomy. While the number of traffic rules is limited, the combinations and uncertainties associated with each agent's behaviour in real-world scenarios are nearly impossible to encode. Consequently, there is a growing interest in learning-based trajectory prediction. The proposed method in this paper predicts trajectories by considering perception and trajectory prediction as a unified system. In considering them as unified tasks, we show that there is the potential to improve the performance of perception. To achieve these goals, we present BEVSeg2TP - a surround-view camera bird's-eye-view-based joint vehicle segmentation and ego vehicle trajectory prediction system for autonomous vehicles. The proposed system uses a network trained on multiple camera views. The images are transformed using several deep learning techniques to perform semantic segmentation of objects, including other vehicles, in the scene. The segmentation outputs are fused across the camera views to obtain a comprehensive representation of the surrounding vehicles from the bird's-eye-view perspective. The system further predicts the future trajectory of the ego vehicle using a spatiotemporal probabilistic network (STPN) to optimize trajectory prediction. This network leverages information from encoder-decoder transformers and joint vehicle segmentation.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

Honeypots are designed to trap the attacker with the purpose of investigating its malicious behavior. Owing to the increasing variety and sophistication of cyber attacks, how to capture high-quality attack data has become a challenge in the context of honeypot area. All-round honeypots, which mean significant improvement in sensibility, countermeasure and stealth, are necessary to tackle the problem. In this paper, we propose a novel honeypot architecture termed HoneyDOC to support all-round honeypot design and implementation. Our HoneyDOC architecture clearly identifies three essential independent and collaborative modules, Decoy, Captor and Orchestrator. Based on the efficient architecture, a Software-Defined Networking (SDN) enabled honeypot system is designed, which supplies high programmability for technically sustaining the features for capturing high-quality data. A proof-of-concept system is implemented to validate its feasibility and effectiveness. The experimental results show the benefits by using the proposed architecture comparing to the previous honeypot solutions.

The electronic design automation of analog circuits has been a longstanding challenge in the integrated circuit field due to the huge design space and complex design trade-offs among circuit specifications. In the past decades, intensive research efforts have mostly been paid to automate the transistor sizing with a given circuit topology. By recognizing the graph nature of circuits, this paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing based on the encoder-dependent optimization subroutines. Particularly, CktGNN encodes circuit graphs using a two-level GNN framework (of nested GNN) where circuits are represented as combinations of subgraphs in a known subgraph basis. In this way, it significantly improves design efficiency by reducing the number of subgraphs to perform message passing. Nonetheless, another critical roadblock to advancing learning-assisted circuit design automation is a lack of public benchmarks to perform canonical assessment and reproducible research. To tackle the challenge, we introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers with carefully-extracted circuit specifications. OCB is also equipped with communicative circuit generation and evaluation capabilities such that it can help to generalize CktGNN to design various analog circuits by producing corresponding datasets. Experiments on OCB show the extraordinary advantages of CktGNN through representation-based optimization frameworks over other recent powerful GNN baselines and human experts' manual designs. Our work paves the way toward a learning-based open-sourced design automation for analog circuits. Our source code is available at \url{//github.com/zehao-dong/CktGNN}.

One of the challenges in robotics is to enable robotic units with the reasoning capability that would be robust enough to execute complex tasks in dynamic environments. Recent advances in LLMs have positioned them as go-to tools for simple reasoning tasks, motivating the pioneering work of Liang et al. [35] that uses an LLM to translate natural language commands into low-level static execution plans for robotic units. Using LLMs inside robotics systems brings their generalization to a new level, enabling zero-shot generalization to new tasks. This paper extends this prior work to dynamic environments. We propose InCoRo, a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot. Our system continuously analyzes the state of the environment and provides adapted execution commands, enabling the robot to adjust to changing environmental conditions and correcting for controller errors. Our system does not require any iterative optimization to learn to accomplish a task as it leverages in-context learning with an off-the-shelf LLM model. Through an extensive validation process involving two standardized industrial robotic units -- SCARA and DELTA types -- we contribute knowledge about these robots, not popular in the community, thereby enriching it. We highlight the generalization capabilities of our system and show that (1) in-context learning in combination with the current state-of-the-art LLMs is an effective way to implement a robotic controller; (2) in static environments, InCoRo surpasses the prior art in terms of the success rate; (3) in dynamic environments, we establish new state-of-the-art for the SCARA and DELTA units, respectively. This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.

Industry surveillance is widely applicable in sectors like retail, manufacturing, education, and smart cities, each presenting unique anomalies requiring specialized detection. However, adapting anomaly detection models to novel viewpoints within the same scenario poses challenges. Extending these models to entirely new scenarios necessitates retraining or fine-tuning, a process that can be time consuming. To address these challenges, we propose the Scenario-Adaptive Anomaly Detection (SA2D) method, leveraging the few-shot learning framework for faster adaptation of pre-trained models to new concepts. Despite this approach, a significant challenge emerges from the absence of a comprehensive dataset with diverse scenarios and camera views. In response, we introduce the Multi-Scenario Anomaly Detection (MSAD) dataset, encompassing 14 distinct scenarios captured from various camera views. This real-world dataset is the first high-resolution anomaly detection dataset, offering a solid foundation for training superior models. MSAD includes diverse normal motion patterns, incorporating challenging variations like different lighting and weather conditions. Through experimentation, we validate the efficacy of SA2D, particularly when trained on the MSAD dataset. Our results show that SA2D not only excels under novel viewpoints within the same scenario but also demonstrates competitive performance when faced with entirely new scenarios. This highlights our method's potential in addressing challenges in detecting anomalies across diverse and evolving surveillance scenarios.

Recently, researchers have been exploring various ways to improve the effectiveness and efficiency of autonomous vehicles by researching new methods, especially for indoor scenarios. Autonomous Vehicles in indoor navigation systems possess many challenges especially the limited accuracy of GPS in indoor scenarios. Several, robust methods have been explored for autonomous vehicles in indoor scenarios to solve this problem, but the ineffectiveness of the proposed methods is the high deployment cost. To address the above-mentioned problems we have presented A low-cost indoor navigation method for autonomous vehicles called Affordable Indoor Navigation Solution (AINS) which is based on based on Monocular Camera. Our proposed solution is mainly based on a mono camera without relying on various huge or power-inefficient sensors to find the path, such as range finders and other navigation sensors. Our proposed method shows that we can deploy autonomous vehicles indoor navigation systems while taking into consideration the cost. We can observe that the results shown by our solution are better than existing solutions and we can reduce the estimated error and time consumption.

Comprehending natural language instructions is a charming property for 3D indoor scene synthesis systems. Existing methods directly model object joint distributions and express object relations implicitly within a scene, thereby hindering the controllability of generation. We introduce InstructScene, a novel generative framework that integrates a semantic graph prior and a layout decoder to improve controllability and fidelity for 3D scene synthesis. The proposed semantic graph prior jointly learns scene appearances and layout distributions, exhibiting versatility across various downstream tasks in a zero-shot manner. To facilitate the benchmarking for text-driven 3D scene synthesis, we curate a high-quality dataset of scene-instruction pairs with large language and multimodal models. Extensive experimental results reveal that the proposed method surpasses existing state-of-the-art approaches by a large margin. Thorough ablation studies confirm the efficacy of crucial design components. Project page: //chenguolin.github.io/projects/InstructScene.

Anomaly detection in decision-making sequences is a challenging problem due to the complexity of normality representation learning and the sequential nature of the task. Most existing methods based on Reinforcement Learning (RL) are difficult to implement in the real world due to unrealistic assumptions, such as having access to environment dynamics, reward signals, and online interactions with the environment. To address these limitations, we propose an unsupervised method named Offline Imitation Learning based Anomaly Detection (OIL-AD), which detects anomalies in decision-making sequences using two extracted behaviour features: action optimality and sequential association. Our offline learning model is an adaptation of behavioural cloning with a transformer policy network, where we modify the training process to learn a Q function and a state value function from normal trajectories. We propose that the Q function and the state value function can provide sufficient information about agents' behavioural data, from which we derive two features for anomaly detection. The intuition behind our method is that the action optimality feature derived from the Q function can differentiate the optimal action from others at each local state, and the sequential association feature derived from the state value function has the potential to maintain the temporal correlations between decisions (state-action pairs). Our experiments show that OIL-AD can achieve outstanding online anomaly detection performance with up to 34.8% improvement in F1 score over comparable baselines.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

北京阿比特科技有限公司