Large-scale multiple testing under static factor models is commonly used to select skilled funds in financial market. However, static factor models are arguably too stringent as it ignores the serial correlation, which severely distorts error rate control in large-scale inference. In this manuscript, we propose a new multiple testing procedure under dynamic factor models that is robust against both heavy-tailed distributions and the serial dependence. The idea is to integrate a new sample-splitting strategy based on chronological order and a two-pass Fama-Macbeth regression to form a series of statistics with marginal symmetry properties and then to utilize the symmetry properties to obtain a data-driven threshold. We show that our procedure is able to control the false discovery rate (FDR) asymptotically under high-dimensional dynamic factor models. As a byproduct that is of independent interest, we establish a new exponential-type deviation inequality for the sum of random variables on a variety of functionals of linear and non-linear processes. Numerical results including a case study on hedge fund selection demonstrate the advantage of the proposed method over several state-of-the-art methods.
Approximate computing (AC) has become a prominent solution to improve the performance, area, and power/energy efficiency of a digital design at the cost of output accuracy. We propose a novel scalable approximate multiplier that utilizes a lookup table-based compensation unit. To improve energy-efficiency, input operands are truncated to a reduced bitwidth representation (e.g., h bits) based on their leading one positions. Then, a curve-fitting method is employed to map the product term to a linear function, and a piecewise constant error-correction term is used to reduce the approximation error. For computing the piecewise constant error-compensation term, we partition the function space into M segments and compute the compensation factor for each segment by averaging the errors in the segment. The multiplier supports various degrees of truncation and error-compensation to exploit accuracy-efficiency trade-off. The proposed approximate multiplier offers better error metrics such as mean and standard deviation of absolute relative error (MARED and StdARED) compare to a state-of-the-art integer approximate multiplier. The proposed approximate multiplier improves the MARED and StdARED by about 38% and 32% when its energy consumption is about equal to the state-of-the-art approximate multiplier. Moreover, the performance of the proposed approximate multiplier is evaluated in image classification applications using a Deep Neural Network (DNN). The results indicate that the degradation of DNN accuracy is negligible especially due to the compensation properties of our approximate multiplier.
A number of information retrieval studies have been done to assess which statistical techniques are appropriate for comparing systems. However, these studies are focused on TREC-style experiments, which typically have fewer than 100 topics. There is no similar line of work for large search and recommendation experiments; such studies typically have thousands of topics or users and much sparser relevance judgements, so it is not clear if recommendations for analyzing traditional TREC experiments apply to these settings. In this paper, we empirically study the behavior of significance tests with large search and recommendation evaluation data. Our results show that the Wilcoxon and Sign tests show significantly higher Type-1 error rates for large sample sizes than the bootstrap, randomization and t-tests, which were more consistent with the expected error rate. While the statistical tests displayed differences in their power for smaller sample sizes, they showed no difference in their power for large sample sizes. We recommend the sign and Wilcoxon tests should not be used to analyze large scale evaluation results. Our result demonstrate that with Top-N recommendation and large search evaluation data, most tests would have a 100% chance of finding statistically significant results. Therefore, the effect size should be used to determine practical or scientific significance.
In empirical studies with time-to-event outcomes, investigators often leverage observational data to conduct causal inference on the effect of exposure when randomized controlled trial data is unavailable. Model misspecification and lack of overlap are common issues in observational studies, and they often lead to inconsistent and inefficient estimators of the average treatment effect. Estimators targeting overlap weighted effects have been proposed to address the challenge of poor overlap, and methods enabling flexible machine learning for nuisance models address model misspecification. However, the approaches that allow machine learning for nuisance models have not been extended to the setting of weighted average treatment effects for time-to-event outcomes when there is poor overlap. In this work, we propose a class of one-step cross-fitted double/debiased machine learning estimators for the weighted cumulative causal effect as a function of restriction time. We prove that the proposed estimators are consistent, asymptotically linear, and reach semiparametric efficiency bounds under regularity conditions. Our simulations show that the proposed estimators using nonparametric machine learning nuisance models perform as well as established methods that require correctly-specified parametric nuisance models, illustrating that our estimators mitigate the need for oracle parametric nuisance models. We apply the proposed methods to real-world observational data from a UK primary care database to compare the effects of anti-diabetic drugs on cancer clinical outcomes.
We study high-dimensional robust statistics tasks in the streaming model. A recent line of work obtained computationally efficient algorithms for a range of high-dimensional robust estimation tasks. Unfortunately, all previous algorithms require storing the entire dataset, incurring memory at least quadratic in the dimension. In this work, we develop the first efficient streaming algorithms for high-dimensional robust statistics with near-optimal memory requirements (up to logarithmic factors). Our main result is for the task of high-dimensional robust mean estimation in (a strengthening of) Huber's contamination model. We give an efficient single-pass streaming algorithm for this task with near-optimal error guarantees and space complexity nearly-linear in the dimension. As a corollary, we obtain streaming algorithms with near-optimal space complexity for several more complex tasks, including robust covariance estimation, robust regression, and more generally robust stochastic optimization.
Empirical likelihood enables a nonparametric, likelihood-driven style of inference without restrictive assumptions routinely made in parametric models. We develop a framework for applying empirical likelihood to the analysis of experimental designs, addressing issues that arise from blocking and multiple hypothesis testing. In addition to popular designs such as balanced incomplete block designs, our approach allows for highly unbalanced, incomplete block designs. We derive an asymptotic multivariate chi-square distribution for a set of empirical likelihood test statistics and propose two single-step multiple testing procedures: asymptotic Monte Carlo and nonparametric bootstrap. Both procedures asymptotically control the generalised family-wise error rate and efficiently construct simultaneous confidence intervals for comparisons of interest without explicitly considering the underlying covariance structure. A simulation study demonstrates that the performance of the procedures is robust to violations of standard assumptions of linear mixed models. We also present an application to experiments on a pesticide.
Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research, in order to avoid improper inference in the downstream data analysis. In the presence of high-dimensional data, imputation models that include feature selection, especially $\ell_1$ regularized regression (such as Lasso, adaptive Lasso, and Elastic Net), are common choices to prevent the model from underdetermination. However, conducting MI with feature selection is difficult: existing methods are often computationally inefficient and poor in performance. We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI. Leveraging the approximation power of neural networks, MISNN is a general and flexible framework, compatible with any feature selection method, any neural network architecture, high/low-dimensional data and general missing patterns. Through empirical experiments, MISNN has demonstrated great advantages over state-of-the-art imputation methods (e.g. Bayesian Lasso and matrix completion), in terms of imputation accuracy, statistical consistency and computation speed.
We consider the problem of sequential multiple hypothesis testing with nontrivial data collection cost. This problem appears, for example, when conducting biological experiments to identify differentially expressed genes in a disease process. This work builds on the generalized $\alpha$-investing framework that enables control of the false discovery rate in a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of $\alpha$-wealth which motivates a consideration of sample size in the $\alpha$-investing decision rule. Posing the testing process as a game with nature, we construct a decision rule that optimizes the expected return (ERO) of $\alpha$-wealth and provides an optimal sample size for the test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than other methods. We extend cost-aware ERO investing to finite-horizon testing which enables the decision rule to allocate samples across many tests. Finally, empirical tests on real data sets from biological experiments show that cost-aware ERO produces actionable decisions to conduct tests at optimal sample sizes.
This article presents the MAGI software package for the inference of dynamic systems. The focus of MAGI is on dynamics modeled by nonlinear ordinary differential equations with unknown parameters. While such models are widely used in science and engineering, the available experimental data for parameter estimation may be noisy and sparse. Furthermore, some system components may be entirely unobserved. MAGI solves this inference problem with the help of manifold-constrained Gaussian processes within a Bayesian statistical framework, whereas unobserved components have posed a significant challenge for existing software. We use several realistic examples to illustrate the functionality of MAGI. The user may choose to use the package in any of the R, MATLAB, and Python environments.
Companies offering web services routinely run randomized online experiments to estimate the causal impact associated with the adoption of new features and policies on key performance metrics of interest. These experiments are used to estimate a variety of effects: the increase in click rate due to the repositioning of a banner, the impact on subscription rate as a consequence of a discount or special offer, etc. In these settings, even effects whose sizes are very small can have large downstream impacts. The simple difference in means estimator (Splawa-Neyman et al., 1990) is still the standard estimator of choice for many online A/B testing platforms due to its simplicity. This method, however, can fail to detect small effects, even when the experiment contains thousands or millions of observational units. As a by-product of these experiments, however, large amounts of additional data (covariates) are collected. In this paper, we discuss benefits, costs and risks of allowing experimenters to leverage more complicated estimators that make use of covariates when estimating causal effects of interest. We adapt a recently proposed general-purpose algorithm for the estimation of causal effects with covariates to the setting of online A/B tests. Through this paradigm, we implement several covariate-adjusted causal estimators. We thoroughly evaluate their performance at scale, highlighting benefits and shortcomings of different methods. We show on real experiments how "covariate-adjusted" estimators can (i) lead to more precise quantification of the causal effects of interest and (ii) fix issues related to imbalance across treatment arms - a practical concern often overlooked in the literature. In turn, (iii) these more precise estimates can reduce experimentation time, cutting cost and helping to streamline decision-making processes, allowing for faster adoption of beneficial interventions.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.