亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Semi-Supervised Learning (FSSL) leverages both labeled and unlabeled data on clients to collaboratively train a model.In FSSL, the heterogeneous data can introduce prediction bias into the model, causing the model's prediction to skew towards some certain classes. Existing FSSL methods primarily tackle this issue by enhancing consistency in model parameters or outputs. However, as the models themselves are biased, merely constraining their consistency is not sufficient to alleviate prediction bias. In this paper, we explore this bias from a Bayesian perspective and demonstrate that it principally originates from label prior bias within the training data. Building upon this insight, we propose a debiasing method for FSSL named FedDB. FedDB utilizes the Average Prediction Probability of Unlabeled Data (APP-U) to approximate the biased prior.During local training, FedDB employs APP-U to refine pseudo-labeling through Bayes' theorem, thereby significantly reducing the label prior bias. Concurrently, during the model aggregation, FedDB uses APP-U from participating clients to formulate unbiased aggregate weights, thereby effectively diminishing bias in the global model. Experimental results show that FedDB can surpass existing FSSL methods. The code is available at //github.com/GuogangZhu/FedDB.

相關內容

High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.

Multimodal AI has demonstrated superior performance over unimodal approaches by leveraging diverse data sources for more comprehensive analysis. However, applying this effectiveness in healthcare is challenging due to the limited availability of public datasets. Federated learning presents an exciting solution, allowing the use of extensive databases from hospitals and health centers without centralizing sensitive data, thus maintaining privacy and security. Yet, research in multimodal federated learning, particularly in scenarios with missing modalities a common issue in healthcare datasets remains scarce, highlighting a critical area for future exploration. Toward this, we propose a novel method for multimodal federated learning with missing modalities. Our contribution lies in a novel cross-modal data augmentation by retrieval, leveraging the small publicly available dataset to fill the missing modalities in the clients. Our method learns the parameters in a federated manner, ensuring privacy protection and improving performance in multiple challenging multimodal benchmarks in the medical domain, surpassing several competitive baselines. Code Available: //github.com/bhattarailab/CAR-MFL

We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.

Immersive Virtual Reality typically requires a head-mounted display (HMD) to visualize the environment and hand-held controllers to interact with the virtual objects. Recently, many applications display full-body avatars to represent the user and animate the arms to follow the controllers. Embodiment is higher when the self-avatar movements align correctly with the user. However, having a full-body self-avatar following the user's movements can be challenging due to the disparities between the virtual body and the user's body. This can lead to misalignments in the hand position that can be noticeable when interacting with virtual objects. In this work, we propose five different interaction modes to allow the user to interact with virtual objects despite the self-avatar and controller misalignment and study their influence on embodiment, proprioception, preference, and task performance. We modify aspects such as whether the virtual controllers are rendered, whether controllers are rendered in their real physical location or attached to the user's hand, and whether stretching the avatar arms to always reach the real controllers. We evaluate the interaction modes both quantitatively (performance metrics) and qualitatively (embodiment, proprioception, and user preference questionnaires). Our results show that the stretching arms solution, which provides body continuity and guarantees that the virtual hands or controllers are in the correct location, offers the best results in embodiment, user preference, proprioception, and performance. Also, rendering the controller does not have an effect on either embodiment or user preference.

This paper introduces aggregate Bayesian Causal Forests (aBCF), a new Bayesian model for causal inference using aggregated data. Aggregated data are common in policy evaluations where we observe individuals such as students, but participation in an intervention is determined at a higher level of aggregation, such as schools implementing a curriculum. Interventions often have millions of individuals but far fewer higher-level units, making aggregation computationally attractive. To analyze aggregated data, a model must account for heteroskedasticity and intraclass correlation (ICC). Like Bayesian Causal Forests (BCF), aBCF estimates heterogeneous treatment effects with minimal parametric assumptions, but accounts for these aggregated data features, improving estimation of average and aggregate unit-specific effects. After introducing the aBCF model, we demonstrate via simulation that aBCF improves performance for aggregated data over BCF. We anchor our simulation on an evaluation of a large-scale Medicare primary care model. We demonstrate that aBCF produces treatment effect estimates with a lower root mean squared error and narrower uncertainty intervals while achieving the same level of coverage. We show that aBCF is not sensitive to the prior distribution used and that estimation improvements relative to BCF decline as the ICC approaches one. Code is available at //github.com/mathematica-mpr/bcf-1.

Explainable Artificial Intelligence (XAI) aims to uncover the decision-making processes of AI models. However, the data used for such explanations can pose security and privacy risks. Existing literature identifies attacks on machine learning models, including membership inference, model inversion, and model extraction attacks. These attacks target either the model or the training data, depending on the settings and parties involved. XAI tools can increase the vulnerability of model extraction attacks, which is a concern when model owners prefer black-box access, thereby keeping model parameters and architecture private. To exploit this risk, we propose AUTOLYCUS, a novel retraining (learning) based model extraction attack framework against interpretable models under black-box settings. As XAI tools, we exploit Local Interpretable Model-Agnostic Explanations (LIME) and Shapley values (SHAP) to infer decision boundaries and create surrogate models that replicate the functionality of the target model. LIME and SHAP are mainly chosen for their realistic yet information-rich explanations, coupled with their extensive adoption, simplicity, and usability. We evaluate AUTOLYCUS on six machine learning datasets, measuring the accuracy and similarity of the surrogate model to the target model. The results show that AUTOLYCUS is highly effective, requiring significantly fewer queries compared to state-of-the-art attacks, while maintaining comparable accuracy and similarity. We validate its performance and transferability on multiple interpretable ML models, including decision trees, logistic regression, naive bayes, and k-nearest neighbor. Additionally, we show the resilience of AUTOLYCUS against proposed countermeasures.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司