亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Measuring distance or similarity between time-series data is a fundamental aspect of many applications including classification, clustering, and ensembling/alignment. Existing measures may fail to capture similarities among local trends (shapes) and may even produce misleading results. Our goal is to develop a measure that looks for similar trends occurring around similar times and is easily interpretable for researchers in applied domains. This is particularly useful for applications where time-series have a sequence of meaningful local trends that are ordered, such as in epidemics (a surge to an increase to a peak to a decrease). We propose a novel measure, DTW+S, which creates an interpretable "closeness-preserving" matrix representation of the time-series, where each column represents local trends, and then it applies Dynamic Time Warping to compute distances between these matrices. We present a theoretical analysis that supports the choice of this representation. We demonstrate the utility of DTW+S in several tasks. For the clustering of epidemic curves, we show that DTW+S is the only measure able to produce good clustering compared to the baselines. For ensemble building, we propose a combination of DTW+S and barycenter averaging that results in the best preservation of characteristics of the underlying trajectories. We also demonstrate that our approach results in better classification compared to Dynamic Time Warping for a class of datasets, particularly when local trends rather than scale play a decisive role.

相關內容

Although multi-view unsupervised feature selection (MUFS) is an effective technology for reducing dimensionality in machine learning, existing methods cannot directly deal with incomplete multi-view data where some samples are missing in certain views. These methods should first apply predetermined values to impute missing data, then perform feature selection on the complete dataset. Separating imputation and feature selection processes fails to capitalize on the potential synergy where local structural information gleaned from feature selection could guide the imputation, thereby improving the feature selection performance in turn. Additionally, previous methods only focus on leveraging samples' local structure information, while ignoring the intrinsic locality of the feature space. To tackle these problems, a novel MUFS method, called UNified view Imputation and Feature selectIon lEaRning (UNIFIER), is proposed. UNIFIER explores the local structure of multi-view data by adaptively learning similarity-induced graphs from both the sample and feature spaces. Then, UNIFIER dynamically recovers the missing views, guided by the sample and feature similarity graphs during the feature selection procedure. Furthermore, the half-quadratic minimization technique is used to automatically weight different instances, alleviating the impact of outliers and unreliable restored data. Comprehensive experimental results demonstrate that UNIFIER outperforms other state-of-the-art methods.

This paper presents an innovative feature signal transmission approach incorpo-rating block-based haptic data reduction to address time-delayed teleoperation. Numerous data reduction techniques rely on perceptual deadband (DB). In the preceding block-based approaches, the whole block within the DB is discarded. However, disregarding all signals within the DB loses too much information and hinders effective haptic signal tracking, as these signals contain valuable infor-mation for signal reconstruction. Consequently, we propose a feature signal transmission approach based on the block algorithm that aggregates samples as a unit, enabling high-quality haptic data reduction. In our proposed approach, we employ max-pooling to extract feature signals from the signals within the DB. These feature signals are then transmitted by adjusting the content of the trans-mission block. This methodology enables the transmission of more useful infor-mation without introducing additional delay, aside from the inherent algorithmic delay. Experimental results demonstrate the superiority of our approach over oth-er state-of-the-art (SOTA) methods on various assessment measures under dis-tinct channel delays.

Anomaly detection stands as a crucial aspect of time series analysis, aiming to identify abnormal events in time series samples. The central challenge of this task lies in effectively learning the representations of normal and abnormal patterns in a label-lacking scenario. Previous research mostly relied on reconstruction-based approaches, restricting the representational abilities of the models. In addition, most of the current deep learning-based methods are not lightweight enough, which prompts us to design a more efficient framework for anomaly detection. In this study, we introduce PatchAD, a novel multi-scale patch-based MLP-Mixer architecture that leverages contrastive learning for representational extraction and anomaly detection. Specifically, PatchAD is composed of four distinct MLP Mixers, exclusively utilizing the MLP architecture for high efficiency and lightweight architecture. Additionally, we also innovatively crafted a dual project constraint module to mitigate potential model degradation. Comprehensive experiments demonstrate that PatchAD achieves state-of-the-art results across multiple real-world multivariate time series datasets. Our code is publicly available.\footnote{\url{//github.com/EmorZz1G/PatchAD}}

DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.

Delay and Doppler ambiguities of comb reference signal patterns are investigated through time delay and Doppler shift detection using high-resolution sensing algorithms. Necessary conditions of designing comb RS patterns and synthesizing different reference signal patterns in general are derived under the goal of eliminating side peaks and preserving the best achievable ambiguity performance of OFDM signals for target detection.

Demystifying interactions between temporal patterns of different scales is fundamental to precise long-range time series forecasting. However, previous works lack the ability to model high-order interactions. To promote more comprehensive pattern interaction modeling for long-range time series forecasting, we propose a Multi-Scale Hypergraph Transformer (MSHyper) framework. Specifically, a multi-scale hypergraph is introduced to provide foundations for modeling high-order pattern interactions. Then by treating hyperedges as nodes, we also build a hyperedge graph to enhance hypergraph modeling. In addition, a tri-stage message passing mechanism is introduced to aggregate pattern information and learn the interaction strength between temporal patterns of different scales. Extensive experiments on five real-world datasets demonstrate that MSHyper achieves state-of-the-art performance, reducing prediction errors by an average of 8.73% and 7.15% over the best baseline in MSE and MAE, respectively.

Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. CSI ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form CRB. Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.

Batteryless energy harvesting systems enable a wide array of new sensing, computation, and communication platforms untethered by power delivery or battery maintenance demands. Energy harvesters charge a buffer capacitor from an unreliable environmental source until enough energy is stored to guarantee a burst of operation despite changes in power input. Current platforms use a fixed-size buffer chosen at design time to meet constraints on charge time or application longevity, but static energy buffers are a poor fit for the highly volatile power sources found in real-world deployments: fixed buffers waste energy both as heat when they reach capacity during a power surplus and as leakage when they fail to charge the system during a power deficit. To maximize batteryless system performance in the face of highly dynamic input power, we propose REACT: a responsive buffering circuit which varies total capacitance according to net input power. REACT uses a variable capacitor bank to expand capacitance to capture incoming energy during a power surplus and reconfigures internal capacitors to reclaim additional energy from each capacitor as power input falls. Compared to fixed-capacity systems, REACT captures more energy, maximizes usable energy, and efficiently decouples system voltage from stored charge -- enabling low-power and high-performance designs previously limited by ambient power. Our evaluation on real-world platforms shows that REACT eliminates the tradeoff between responsiveness, efficiency, and longevity, increasing the energy available for useful work by an average 25.6% over static buffers optimized for reactivity and capacity, improving event responsiveness by an average 7.7x without sacrificing capacity, and enabling programmer directed longevity guarantees.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司