亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dealing with distribution shifts is one of the central challenges for modern machine learning. One fundamental situation is the \emph{covariate shift}, where the input distributions of data change from training to testing stages while the input-conditional output distribution remains unchanged. In this paper, we initiate the study of a more challenging scenario -- \emph{continuous} covariate shift -- in which the test data appear sequentially, and their distributions can shift continuously. Our goal is to adaptively train the predictor such that its prediction risk accumulated over time can be minimized. Starting with the importance-weighted learning, we show the method works effectively if the time-varying density ratios of test and train inputs can be accurately estimated. However, existing density ratio estimation methods would fail due to data scarcity at each time step. To this end, we propose an online method that can appropriately reuse historical information. Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound, which finally leads to an excess risk guarantee for the predictor. Empirical results also validate the effectiveness.

相關內容

We consider two-step estimation of latent variable models, in which just the measurement model is estimated in the first step and the measurement parameters are then fixed at their estimated values in the second step where the structural model is estimated. We show how this approach can be implemented for latent trait models (item response theory models) where the latent variables are continuous and their measurement indicators are categorical variables. The properties of two-step estimators are examined using simulation studies and applied examples. They perform well, and have attractive practical and conceptual properties compared to the alternative one-step and three-step approaches. These results are in line with previous findings for other families of latent variable models. This provides strong evidence that two-step estimation is a flexible and useful general method of estimation for different types of latent variable models.

Developing gaze estimation models that generalize well to unseen domains and in-the-wild conditions remains a challenge with no known best solution. This is mostly due to the difficulty of acquiring ground truth data that cover the distribution of possible faces, head poses and environmental conditions that exist in the real world. In this work, we propose to train general gaze estimation models based on 3D geometry-aware gaze pseudo-annotations which we extract from arbitrary unlabelled face images, which are abundantly available in the internet. Additionally, we leverage the observation that head, body and hand pose estimation benefit from revising them as dense 3D coordinate prediction, and similarly express gaze estimation as regression of dense 3D eye meshes. We overcome the absence of compatible ground truth by fitting rigid 3D eyeballs on existing gaze datasets and design a multi-view supervision framework to balance the effect of pseudo-labels during training. We test our method in the task of gaze generalization, in which we demonstrate improvement of up to $30\%$ compared to state-of-the-art when no ground truth data are available, and up to $10\%$ when they are. The project material will become available for research purposes.

Deep learning algorithms have recently shown to be a successful tool in estimating parameters of statistical models for which simulation is easy, but likelihood computation is challenging. But the success of these approaches depends on simulating parameters that sufficiently reproduce the observed data, and, at present, there is a lack of efficient methods to produce these simulations. We develop new black-box procedures to estimate parameters of statistical models based only on weak parameter structure assumptions. For well-structured likelihoods with frequent occurrences, such as in time series, this is achieved by pre-training a deep neural network on an extensive simulated database that covers a wide range of data sizes. For other types of complex dependencies, an iterative algorithm guides simulations to the correct parameter region in multiple rounds. These approaches can successfully estimate and quantify the uncertainty of parameters from non-Gaussian models with complex spatial and temporal dependencies. The success of our methods is a first step towards a fully flexible automatic black-box estimation framework.

Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible, and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components, and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance without sacrificing the quality of the coefficients' estimation. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study.

Modelling the extremal dependence of bivariate variables is important in a wide variety of practical applications, including environmental planning, catastrophe modelling and hydrology. The majority of these approaches are based on the framework of bivariate regular variation, and a wide range of literature is available for estimating the dependence structure in this setting. However, this framework is only applicable to variables exhibiting asymptotic dependence, even though asymptotic independence is often observed in practice. In this paper, we consider the so-called `angular dependence function'; this quantity summarises the extremal dependence structure for asymptotically independent variables. Until recently, only pointwise estimators of the angular dependence function have been available. We introduce a range of global estimators and compare them to another recently introduced technique for global estimation through a systematic simulation study, and a case study on river flow data from the north of England, UK.

A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Sz\'ekely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure separation between the finite dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally the methodology is applied to two examples; one involves GDP of selected countries and the other is population size of various states in the U.S.A. in the years 1900 -1999.

In real-world applications of reinforcement learning, it is often challenging to obtain a state representation that is parsimonious and satisfies the Markov property without prior knowledge. Consequently, it is common practice to construct a state which is larger than necessary, e.g., by concatenating measurements over contiguous time points. However, needlessly increasing the dimension of the state can slow learning and obfuscate the learned policy. We introduce the notion of a minimal sufficient state in a Markov decision process (MDP) as the smallest subvector of the original state under which the process remains an MDP and shares the same optimal policy as the original process. We propose a novel sequential knockoffs (SEEK) algorithm that estimates the minimal sufficient state in a system with high-dimensional complex nonlinear dynamics. In large samples, the proposed method controls the false discovery rate, and selects all sufficient variables with probability approaching one. As the method is agnostic to the reinforcement learning algorithm being applied, it benefits downstream tasks such as policy optimization. Empirical experiments verify theoretical results and show the proposed approach outperforms several competing methods in terms of variable selection accuracy and regret.

Each year, deep learning demonstrates new and improved empirical results with deeper and wider neural networks. Meanwhile, with existing theoretical frameworks, it is difficult to analyze networks deeper than two layers without resorting to counting parameters or encountering sample complexity bounds that are exponential in depth. Perhaps it may be fruitful to try to analyze modern machine learning under a different lens. In this paper, we propose a novel information-theoretic framework with its own notions of regret and sample complexity for analyzing the data requirements of machine learning. With our framework, we first work through some classical examples such as scalar estimation and linear regression to build intuition and introduce general techniques. Then, we use the framework to study the sample complexity of learning from data generated by deep neural networks with ReLU activation units. For a particular prior distribution on weights, we establish sample complexity bounds that are simultaneously width independent and linear in depth. This prior distribution gives rise to high-dimensional latent representations that, with high probability, admit reasonably accurate low-dimensional approximations. We conclude by corroborating our theoretical results with experimental analysis of random single-hidden-layer neural networks.

Synthetic control is a causal inference tool used to estimate the treatment effects of an intervention by creating synthetic counterfactual data. This approach combines measurements from other similar observations (i.e., donor pool ) to predict a counterfactual time series of interest (i.e., target unit) by analyzing the relationship between the target and the donor pool before the intervention. As synthetic control tools are increasingly applied to sensitive or proprietary data, formal privacy protections are often required. In this work, we provide the first algorithms for differentially private synthetic control with explicit error bounds. Our approach builds upon tools from non-private synthetic control and differentially private empirical risk minimization. We provide upper and lower bounds on the sensitivity of the synthetic control query and provide explicit error bounds on the accuracy of our private synthetic control algorithms. We show that our algorithms produce accurate predictions for the target unit, and that the cost of privacy is small. Finally, we empirically evaluate the performance of our algorithm, and show favorable performance in a variety of parameter regimes, as well as providing guidance to practitioners for hyperparameter tuning.

We consider the problem of computing a Gaussian approximation to the posterior distribution of a parameter given a large number N of observations and a Gaussian prior, when the dimension of the parameter d is also large. To address this problem we build on a recently introduced recursive algorithm for variational Gaussian approximation of the posterior, called recursive variational Gaussian approximation (RVGA), which is a single pass algorithm, free of parameter tuning. In this paper, we consider the case where the parameter dimension d is high, and we propose a novel version of RVGA that scales linearly in the dimension d (as well as in the number of observations N), and which only requires linear storage capacity in d. This is afforded by the use of a novel recursive expectation maximization (EM) algorithm applied for factor analysis introduced herein, to approximate at each step the covariance matrix of the Gaussian distribution conveying the uncertainty in the parameter. The approach is successfully illustrated on the problems of high dimensional least-squares and logistic regression, and generalized to a large class of nonlinear models.

北京阿比特科技有限公司