Backdoor attacks present a substantial security concern for deep learning models, especially those utilized in applications critical to safety and security. These attacks manipulate model behavior by embedding a hidden trigger during the training phase, allowing unauthorized control over the model's output during inference time. Although numerous defenses exist for image classification models, there is a conspicuous absence of defenses tailored for time series data, as well as an end-to-end solution capable of training clean models on poisoned data. To address this gap, this paper builds upon Anti-Backdoor Learning (ABL) and introduces an innovative method, End-to-End Anti-Backdoor Learning (E2ABL), for robust training against backdoor attacks. Unlike the original ABL, which employs a two-stage training procedure, E2ABL accomplishes end-to-end training through an additional classification head linked to the shallow layers of a Deep Neural Network (DNN). This secondary head actively identifies potential backdoor triggers, allowing the model to dynamically cleanse these samples and their corresponding labels during training. Our experiments reveal that E2ABL significantly improves on existing defenses and is effective against a broad range of backdoor attacks in both image and time series domains.
Document tamper detection has always been an important aspect of tamper detection. Before the advent of deep learning, document tamper detection was difficult. We have made some explorations in the field of text tamper detection based on deep learning. Our Ps tamper detection method includes three steps: feature assistance, audit point positioning, and tamper recognition. It involves hierarchical filtering and graded output (tampered/suspected tampered/untampered). By combining artificial tamper data features, we simulate and augment data samples in various scenarios (cropping with noise addition/replacement, single character/space replacement, smearing/splicing, brightness/contrast adjustment, etc.). The auxiliary features include exif/binary stream keyword retrieval/noise, which are used for branch detection based on the results. Audit point positioning uses detection frameworks and controls thresholds for high and low density detection. Tamper recognition employs a dual-path dual-stream recognition network, with RGB and ELA stream feature extraction. After dimensionality reduction through self-correlation percentile pooling, the fused output is processed through vlad, yielding an accuracy of 0.804, recall of 0.659, and precision of 0.913.
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in optimizing the performance of systems where multiple agents coexist and compete for shared resources. However, applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc. To address these challenges, we present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods. The recently introduced neuro-symbolic Logical Neural Networks (LNN) framework serves as a function approximator for the RL, to train a rules-based policy that is both logical and interpretable by construction. To enable decision-making under uncertainty and partial observability, we developed a novel probabilistic neuro-symbolic framework, Probabilistic Logical Neural Networks (PLNN), which combines the capabilities of logical reasoning with probabilistic graphical models. In PLNN, the upward/downward inference strategy, inherited from LNN, is coupled with belief bounds by setting the activation function for the logical operator associated with each neural network node to a probability-respecting generalization of the Fr\'echet inequalities. These PLNN nodes form the unifying element that combines probabilistic logic and Bayes Nets, permitting inference for variables with unobserved states. We demonstrate our contributions by addressing key MARL challenges for power sharing in a system-on-chip application.
In the field of multi-agent learning, the challenge of mixed-motive cooperation is pronounced, given the inherent contradictions between individual and collective goals. Current research in this domain primarily focuses on incorporating domain knowledge into rewards or introducing additional mechanisms to foster cooperation. However, many of these methods suffer from the drawbacks of manual design costs and the lack of a theoretical grounding convergence procedure to the solution. To address this gap, we approach the mixed-motive game by modeling it as a differentiable game to study learning dynamics. We introduce a novel optimization method named Altruistic Gradient Adjustment (AgA) that employs gradient adjustments to novelly align individual and collective objectives. Furthermore, we provide theoretical proof that the selection of an appropriate alignment weight in AgA can accelerate convergence towards the desired solutions while effectively avoiding the undesired ones. The visualization of learning dynamics effectively demonstrates that AgA successfully achieves alignment between individual and collective objectives. Additionally, through evaluations conducted on established mixed-motive benchmarks such as the public good game, Cleanup, Harvest, and our modified mixed-motive SMAC environment, we validate AgA's capability to facilitate altruistic and fair collaboration.
With the recent growth in demand for large-scale deep neural networks, compute in-memory (CiM) has come up as a prominent solution to alleviate bandwidth and on-chip interconnect bottlenecks that constrain Von-Neuman architectures. However, the construction of CiM hardware poses a challenge as any specific memory hierarchy in terms of cache sizes and memory bandwidth at different interfaces may not be ideally matched to any neural network's attributes such as tensor dimension and arithmetic intensity, thus leading to suboptimal and under-performing systems. Despite the success of neural architecture search (NAS) techniques in yielding efficient sub-networks for a given hardware metric budget (e.g., DNN execution time or latency), it assumes the hardware configuration to be frozen, often yielding sub-optimal sub-networks for a given budget. In this paper, we present CiMNet, a framework that jointly searches for optimal sub-networks and hardware configurations for CiM architectures creating a Pareto optimal frontier of downstream task accuracy and execution metrics (e.g., latency). The proposed framework can comprehend the complex interplay between a sub-network's performance and the CiM hardware configuration choices including bandwidth, processing element size, and memory size. Exhaustive experiments on different model architectures from both CNN and Transformer families demonstrate the efficacy of the CiMNet in finding co-optimized sub-networks and CiM hardware configurations. Specifically, for similar ImageNet classification accuracy as baseline ViT-B, optimizing only the model architecture increases performance (or reduces workload execution time) by 1.7x while optimizing for both the model architecture and hardware configuration increases it by 3.1x.
Fingerprint recognition stands as a pivotal component of biometric technology, with diverse applications from identity verification to advanced search tools. In this paper, we propose a unique method for deriving robust fingerprint representations by leveraging enhancement-based pre-training. Building on the achievements of U-Net-based fingerprint enhancement, our method employs a specialized encoder to derive representations from fingerprint images in a self-supervised manner. We further refine these representations, aiming to enhance the verification capabilities. Our experimental results, tested on publicly available fingerprint datasets, reveal a marked improvement in verification performance against established self-supervised training techniques. Our findings not only highlight the effectiveness of our method but also pave the way for potential advancements. Crucially, our research indicates that it is feasible to extract meaningful fingerprint representations from degraded images without relying on enhanced samples.
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
We present Meena, a multi-turn open-domain chatbot trained end-to-end on data mined and filtered from public domain social media conversations. This 2.6B parameter neural network is trained to minimize perplexity, an automatic metric that we compare against human judgement of multi-turn conversation quality. To capture this judgement, we propose a human evaluation metric called Sensibleness and Specificity Average (SSA), which captures key elements of good conversation. Interestingly, our experiments show strong correlation between perplexity and SSA. The fact that the best perplexity end-to-end trained Meena scores high on SSA (72% on multi-turn evaluation) suggests that a human-level SSA of 86% is potentially within reach if we can better optimize perplexity. Additionally, the full version of Meena (with a filtering mechanism and tuned decoding) scores 79% SSA, 23% higher than the next highest scoring chatbot that we evaluated.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.