We present Meena, a multi-turn open-domain chatbot trained end-to-end on data mined and filtered from public domain social media conversations. This 2.6B parameter neural network is trained to minimize perplexity, an automatic metric that we compare against human judgement of multi-turn conversation quality. To capture this judgement, we propose a human evaluation metric called Sensibleness and Specificity Average (SSA), which captures key elements of good conversation. Interestingly, our experiments show strong correlation between perplexity and SSA. The fact that the best perplexity end-to-end trained Meena scores high on SSA (72% on multi-turn evaluation) suggests that a human-level SSA of 86% is potentially within reach if we can better optimize perplexity. Additionally, the full version of Meena (with a filtering mechanism and tuned decoding) scores 79% SSA, 23% higher than the next highest scoring chatbot that we evaluated.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.
We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Named Entity Recognition (NER) plays an important role in a wide range of natural language processing tasks, such as relation extraction, question answering, etc. However, previous studies on NER are limited to a particular genre, using small manually-annotated or large but low-quality datasets. In this work, we propose a semi-supervised annotation framework to make full use of abstracts from Wikipedia and obtain a large and high-quality dataset called AnchorNER. We assume anchored strings in abstracts are named entities and annotate them with entity types mentioned in DBpedia. To improve the coverage, we design a neural correction model trained with a human-annotated NER dataset, DocRED, to correct the false-negative entity labels, and then train a BERT model with the corrected dataset. We evaluate our trained model on six NER datasets and our experimental results show that we have obtained state-of-the-art open-domain performances --- on top of the strong baselines BERT-base and BERT-large, we achieve relative improvements of 4.66% and 3.07% respectively.
There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.
The majority of conversations a dialogue agent sees over its lifetime occur after it has already been trained and deployed, leaving a vast store of potential training signal untapped. In this work, we propose the self-feeding chatbot, a dialogue agent with the ability to extract new training examples from the conversations it participates in. As our agent engages in conversation, it also estimates user satisfaction in its responses. When the conversation appears to be going well, the user's responses become new training examples to imitate. When the agent believes it has made a mistake, it asks for feedback; learning to predict the feedback that will be given improves the chatbot's dialogue abilities further. On the PersonaChat chit-chat dataset with over 131k training examples, we find that learning from dialogue with a self-feeding chatbot significantly improves performance, regardless of the amount of traditional supervision.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.1%, which is 23.7 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at //stanfordnlp.github.io/coqa/
In recent years, there have been amazing advances in deep learning methods for machine reading. In machine reading, the machine reader has to extract the answer from the given ground truth paragraph. Recently, the state-of-the-art machine reading models achieve human level performance in SQuAD which is a reading comprehension-style question answering (QA) task. The success of machine reading has inspired researchers to combine information retrieval with machine reading to tackle open-domain QA. However, these systems perform poorly compared to reading comprehension-style QA because it is difficult to retrieve the pieces of paragraphs that contain the answer to the question. In this study, we propose two neural network rankers that assign scores to different passages based on their likelihood of containing the answer to a given question. Additionally, we analyze the relative importance of semantic similarity and word level relevance matching in open-domain QA.
Effective task management is essential to successful team collaboration. While the past decade has seen considerable innovation in systems that track and manage group tasks, these innovations have typically been outside of the principal communication channels: email, instant messenger, and group chat. Teams formulate, discuss, refine, assign, and track the progress of their collaborative tasks over electronic communication channels, yet they must leave these channels to update their task-tracking tools, creating a source of friction and inefficiency. To address this problem, we explore how bots might be used to mediate task management for individuals and teams. We deploy a prototype bot to eight different teams of information workers to help them create, assign, and keep track of tasks, all within their main communication channel. We derived seven insights for the design of future bots for coordinating work.
While conversing with chatbots, humans typically tend to ask many questions, a significant portion of which can be answered by referring to large-scale knowledge graphs (KG). While Question Answering (QA) and dialog systems have been studied independently, there is a need to study them closely to evaluate such real-world scenarios faced by bots involving both these tasks. Towards this end, we introduce the task of Complex Sequential QA which combines the two tasks of (i) answering factual questions through complex inferencing over a realistic-sized KG of millions of entities, and (ii) learning to converse through a series of coherently linked QA pairs. Through a labor intensive semi-automatic process, involving in-house and crowdsourced workers, we created a dataset containing around 200K dialogs with a total of 1.6M turns. Further, unlike existing large scale QA datasets which contain simple questions that can be answered from a single tuple, the questions in our dialogs require a larger subgraph of the KG. Specifically, our dataset has questions which require logical, quantitative, and comparative reasoning as well as their combinations. This calls for models which can: (i) parse complex natural language questions, (ii) use conversation context to resolve coreferences and ellipsis in utterances, (iii) ask for clarifications for ambiguous queries, and finally (iv) retrieve relevant subgraphs of the KG to answer such questions. However, our experiments with a combination of state of the art dialog and QA models show that they clearly do not achieve the above objectives and are inadequate for dealing with such complex real world settings. We believe that this new dataset coupled with the limitations of existing models as reported in this paper should encourage further research in Complex Sequential QA.