亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Regulations and standards in the field of artificial intelligence (AI) are necessary to minimise risks and maximise benefits, yet some argue that they stifle innovation. This paper critically examines the idea that regulation stifles innovation in the field of AI. Current trends in AI regulation, particularly the proposed European AI Act and the standards supporting its implementation, are discussed. Arguments in support of the idea that regulation stifles innovation are analysed and criticised, and an alternative point of view is offered, showing how regulation and standards can foster innovation in the field of AI.

相關內容

人(ren)(ren)工(gong)智(zhi)能(neng)雜(za)志AI(Artificial Intelligence)是目(mu)前公認的(de)(de)(de)發表該領域最新研究(jiu)成(cheng)果的(de)(de)(de)主要國際(ji)論壇。該期刊歡迎(ying)有關(guan)AI廣(guang)泛方面的(de)(de)(de)論文,這些論文構成(cheng)了整個(ge)領域的(de)(de)(de)進步,也歡迎(ying)介紹(shao)人(ren)(ren)工(gong)智(zhi)能(neng)應用(yong)的(de)(de)(de)論文,但(dan)重點應該放在新的(de)(de)(de)和(he)新穎的(de)(de)(de)人(ren)(ren)工(gong)智(zhi)能(neng)方法如何(he)提高應用(yong)領域的(de)(de)(de)性(xing)(xing)能(neng),而不是介紹(shao)傳統人(ren)(ren)工(gong)智(zhi)能(neng)方法的(de)(de)(de)另一個(ge)應用(yong)。關(guan)于應用(yong)的(de)(de)(de)論文應該描述一個(ge)原則性(xing)(xing)的(de)(de)(de)解決方案,強調其新穎性(xing)(xing),并對(dui)正在開發的(de)(de)(de)人(ren)(ren)工(gong)智(zhi)能(neng)技術進行(xing)深入(ru)的(de)(de)(de)評估。 官網地址(zhi):

Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.

Conventional de-noising methods rely on the assumption that all samples are independent and identically distributed, so the resultant classifier, though disturbed by noise, can still easily identify the noises as the outliers of training distribution. However, the assumption is unrealistic in large-scale data that is inevitably long-tailed. Such imbalanced training data makes a classifier less discriminative for the tail classes, whose previously "easy" noises are now turned into "hard" ones -- they are almost as outliers as the clean tail samples. We introduce this new challenge as Noisy Long-Tailed Classification (NLT). Not surprisingly, we find that most de-noising methods fail to identify the hard noises, resulting in significant performance drop on the three proposed NLT benchmarks: ImageNet-NLT, Animal10-NLT, and Food101-NLT. To this end, we design an iterative noisy learning framework called Hard-to-Easy (H2E). Our bootstrapping philosophy is to first learn a classifier as noise identifier invariant to the class and context distributional changes, reducing "hard" noises to "easy" ones, whose removal further improves the invariance. Experimental results show that our H2E outperforms state-of-the-art de-noising methods and their ablations on long-tailed settings while maintaining a stable performance on the conventional balanced settings. Datasets and codes are available at //github.com/yxymessi/H2E-Framework

Globalization has introduced many new challenges making Supply chain management (SCM) complex and huge, for which improvement is needed in many industries. The Internet of Things (IoT) has solved many problems by providing security and traceability with a promising solution for supply chain management. SCM is segregated into different processes, each requiring different types of solutions. IoT devices can solve distributed system problems by creating trustful relationships. Since the whole business industry depends on the trust between different supply chain actors, IoT can provide this trust by making the entire ecosystem much more secure, reliable, and traceable. This paper will discuss how IoT technology has solved problems related to SCM in different areas. Supply chains in different industries, from pharmaceuticals to agriculture supply chain, have different issues and require different solutions. We will discuss problems such as security, tracking, traceability, and warehouse issues. All challenges faced by independent industries regarding the supply chain and how the amalgamation of IoT with other technology will be provided with solutions.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

北京阿比特科技有限公司