Globalization has introduced many new challenges making Supply chain management (SCM) complex and huge, for which improvement is needed in many industries. The Internet of Things (IoT) has solved many problems by providing security and traceability with a promising solution for supply chain management. SCM is segregated into different processes, each requiring different types of solutions. IoT devices can solve distributed system problems by creating trustful relationships. Since the whole business industry depends on the trust between different supply chain actors, IoT can provide this trust by making the entire ecosystem much more secure, reliable, and traceable. This paper will discuss how IoT technology has solved problems related to SCM in different areas. Supply chains in different industries, from pharmaceuticals to agriculture supply chain, have different issues and require different solutions. We will discuss problems such as security, tracking, traceability, and warehouse issues. All challenges faced by independent industries regarding the supply chain and how the amalgamation of IoT with other technology will be provided with solutions.
The sustained growth of carbon emissions and global waste elicits significant sustainability concerns for our environment's future. The growing Internet of Things (IoT) has the potential to exacerbate this issue. However, an emerging area known as Tiny Machine Learning (TinyML) has the opportunity to help address these environmental challenges through sustainable computing practices. TinyML, the deployment of machine learning (ML) algorithms onto low-cost, low-power microcontroller systems, enables on-device sensor analytics that unlocks numerous always-on ML applications. This article discusses both the potential of these TinyML applications to address critical sustainability challenges, as well as the environmental footprint of this emerging technology. Through a complete life cycle analysis (LCA), we find that TinyML systems present opportunities to offset their carbon emissions by enabling applications that reduce the emissions of other sectors. Nevertheless, when globally scaled, the carbon footprint of TinyML systems is not negligible, necessitating that designers factor in environmental impact when formulating new devices. Finally, we outline research directions to enable further sustainable contributions of TinyML.
Federated learning (FL) enables participating parties to collaboratively build a global model with boosted utility without disclosing private data information. Appropriate protection mechanisms have to be adopted to fulfill the requirements in preserving \textit{privacy} and maintaining high model \textit{utility}. The nature of the widely-adopted protection mechanisms including \textit{Randomization Mechanism} and \textit{Compression Mechanism} is to protect privacy via distorting model parameter. We measure the utility via the gap between the original model parameter and the distorted model parameter. We want to identify under what general conditions privacy-preserving federated learning can achieve near-optimal utility via data generation and parameter distortion. To provide an avenue for achieving near-optimal utility, we present an upper bound for utility loss, which is measured using two main terms called variance-reduction and model parameter discrepancy separately. Our analysis inspires the design of appropriate protection parameters for the protection mechanisms to achieve near-optimal utility and meet the privacy requirements simultaneously. The main techniques for the protection mechanism include parameter distortion and data generation, which are generic and can be applied extensively. Furthermore, we provide an upper bound for the trade-off between privacy and utility, which together with the lower bound illustrated in NFL form the conditions for achieving optimal trade-off.
While the increased use of AI in the manufacturing sector has been widely noted, there is little understanding on the risks that it may raise in a manufacturing organisation. Although various high level frameworks and definitions have been proposed to consolidate potential risks, practitioners struggle with understanding and implementing them. This lack of understanding exposes manufacturing to a multitude of risks, including the organisation, its workers, as well as suppliers and clients. In this paper, we explore and interpret the applicability of responsible, ethical, and trustworthy AI within the context of manufacturing. We then use a broadened adaptation of a machine learning lifecycle to discuss, through the use of illustrative examples, how each step may result in a given AI trustworthiness concern. We additionally propose a number of research questions to the manufacturing research community, in order to help guide future research so that the economic and societal benefits envisaged by AI in manufacturing are delivered safely and responsibly.
Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.
Despite its successes, to date Artificial Intelligence (AI) is still characterized by a number of shortcomings with regards to different application domains and goals. These limitations are arguably both conceptual (e.g., related to underlying theoretical models, such as symbolic vs. connectionist), and operational (e.g., related to robustness and ability to generalize). Biologically inspired AI, and more specifically brain-inspired AI, promises to provide further biological aspects beyond those that are already traditionally included in AI, making it possible to assess and possibly overcome some of its present shortcomings. This article examines some conceptual, technical, and ethical issues raised by the development and use of brain-inspired AI. Against this background, the paper asks whether there is anything ethically unique about brain-inspired AI. The aim of the paper is to introduce a method that has a heuristic nature and that can be applied to identify and address the ethical issues arising from brain-inspired AI. The conclusion resulting from the application of this method is that, compared to traditional AI, brain-inspired AI raises new foundational ethical issues and some new practical ethical issues, and exacerbates some of the issues raised by traditional AI.
The widespread adoption of Internet of Things (IoT) devices in smart cities, intelligent healthcare systems, and various real-world applications have resulted in the generation of vast amounts of data, often analyzed using different Machine Learning (ML) models. Federated learning (FL) has been acknowledged as a privacy-preserving machine learning technology, where multiple parties cooperatively train ML models without exchanging raw data. However, the current FL architecture does not allow for an audit of the training process due to the various data-protection policies implemented by each FL participant. Furthermore, there is no global model verifiability available in the current architecture. This paper proposes a smart contract-based policy control for securing the Federated Learning (FL) management system. First, we develop and deploy a smart contract-based local training policy control on the FL participants' side. This policy control is used to verify the training process, ensuring that the evaluation process follows the same rules for all FL participants. We then enforce a smart contract-based aggregation policy to manage the global model aggregation process. Upon completion, the aggregated model and policy are stored on blockchain-based storage. Subsequently, we distribute the aggregated global model and the smart contract to all FL participants. Our proposed method uses smart policy control to manage access and verify the integrity of machine learning models. We conducted multiple experiments with various machine learning architectures and datasets to evaluate our proposed framework, such as MNIST and CIFAR-10.
Research shows that the global society as organized today, with our current technological and economic system, is impossible to sustain. We are living in the Anthropocene, an era in which human activities in highly industrialized countries are responsible for overshooting several planetary boundaries, with poorer communities contributing least to the problems but being impacted the most. At the same time, technical and economic gains fail to provide society at large with equal opportunities and improved quality of life. This paper describes approaches taken in computing education to address the issue of sustainability. It presents results of a systematic review of literature on sustainability in computing education. From a set of 572 publications extracted from six large digital libraries plus snowballing, we distilled and analyzed the 90 relevant primary studies. Using an inductive and deductive thematic analysis, we study 1) conceptions of sustainability, computing, and education, 2) implementations of sustainability in computing education, and 3) research on sustainability in computing education. We present a framework capturing learning objectives and outcomes as well as pedagogical methods for sustainability in computing education. These results can be mapped to existing standards and curricula in future work. We find that only a few of the articles engage with the challenges as calling for drastic systemic change, along with radically new understandings of computing and education. We suggest that future research should connect to the substantial body of critical theory such as feminist theory of science and technology. Existing research on sustainability in computing education may be considered as rather immature as the majority of articles are experience reports with limited empirical research.
Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.