亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data Augmentation (DA) has emerged as an indispensable strategy in Time Series Classification (TSC), primarily due to its capacity to amplify training samples, thereby bolstering model robustness, diversifying datasets, and curtailing overfitting. However, the current landscape of DA in TSC is plagued with fragmented literature reviews, nebulous methodological taxonomies, inadequate evaluative measures, and a dearth of accessible, user-oriented tools. In light of these challenges, this study embarks on an exhaustive dissection of DA methodologies within the TSC realm. Our initial approach involved an extensive literature review spanning a decade, revealing that contemporary surveys scarcely capture the breadth of advancements in DA for TSC, prompting us to meticulously analyze over 100 scholarly articles to distill more than 60 unique DA techniques. This rigorous analysis precipitated the formulation of a novel taxonomy, purpose-built for the intricacies of DA in TSC, categorizing techniques into five principal echelons: Transformation-Based, Pattern-Based, Generative, Decomposition-Based, and Automated Data Augmentation. Our taxonomy promises to serve as a robust navigational aid for scholars, offering clarity and direction in method selection. Addressing the conspicuous absence of holistic evaluations for prevalent DA techniques, we executed an all-encompassing empirical assessment, wherein upwards of 15 DA strategies were subjected to scrutiny across 8 UCR time-series datasets, employing ResNet and a multi-faceted evaluation paradigm encompassing Accuracy, Method Ranking, and Residual Analysis, yielding a benchmark accuracy of 88.94 +- 11.83%. Our investigation underscored the inconsistent efficacies of DA techniques, with...

相關內容

服務范圍涵蓋服務創新研發的所有計算和軟件科學技術方面。IEEE服務計算事務強調算法、數學、統計和計算方法,這些方法是服務計算的核心,是面向服務的體系結構、Web服務、業務流程集成、解決方案性能管理、服務操作和管理的新興領域。官網地址:

Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active Inference planner (AIP) for adaptive high-level action selection and a novel Multi-Modal Model Predictive Path Integral controller (M3P2I) for low-level control. This results in a scheme that simultaneously adapts both high-level actions and low-level motions. The AIP generates alternative symbolic plans, each linked to a cost function for M3P2I. The latter employs a physics simulator for diverse trajectory rollouts, deriving optimal control by weighing the different samples according to their cost. This idea enables blending different robot skills for fluid and reactive plan execution, accommodating plan adjustments at both the high and low levels to cope, for instance, with dynamic obstacles or disturbances that invalidate the current plan. We have tested our approach in simulations and real-world scenarios.

The potential of using a large language model (LLM) as a knowledge base (KB) has sparked significant interest. To manage the knowledge acquired by LLMs, we need to ensure that the editing of learned facts respects internal logical constraints, which are known as dependency of knowledge. Existing work on editing LLMs has partially addressed the issue of dependency, when the editing of a fact should apply to its lexical variations without disrupting irrelevant ones. However, they neglect the dependency between a fact and its logical implications. We propose an evaluation protocol with an accompanying question-answering dataset, DepEdit, that provides a comprehensive assessment of the editing process considering the above notions of dependency. Our protocol involves setting up a controlled environment in which we edit facts and monitor their impact on LLMs, along with their implications based on If-Then rules. Extensive experiments on DepEdit show that existing knowledge editing methods are sensitive to the surface form of knowledge, and that they have limited performance in inferring the implications of edited facts.

Large Language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique. Despite this progress, their reasoning is often constrained by their intrinsic understanding, lacking external insights. To address this, we propose Exchange-of-Thought (EoT), a novel framework that enables cross-model communication during problem-solving. Drawing inspiration from network topology, EoT integrates four unique communication paradigms: Memory, Report, Relay, and Debate. This paper delves into the communication dynamics and volume associated with each paradigm. To counterbalance the risks of incorrect reasoning chains, we implement a robust confidence evaluation mechanism within these communications. Our experiments across diverse complex reasoning tasks demonstrate that EoT significantly surpasses established baselines, underscoring the value of external insights in enhancing LLM performance. Furthermore, we show that EoT achieves these superior results in a cost-effective manner, marking a promising advancement for efficient and collaborative AI problem-solving.

Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is challenging, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on small-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. In this work, we specifically concentrate on 2 Time-sliced Bayesian Networks (2-TBNs), a special class of DBNs. Furthermore, we leverage the prior knowledge of 2-TBNs to enhance the performance of the strategy we introduce. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Experimental results demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. On problem instances with more than 1,000 variables, our approach improves two accuracy metrics by 74.45% and 110.94% on average , respectively, while reducing runtime by 93.65% on average.

Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.

As Large Language Models (LLMs) become popular, there emerged an important trend of using multimodality to augment the LLMs' generation ability, which enables LLMs to better interact with the world. However, there lacks a unified perception of at which stage and how to incorporate different modalities. In this survey, we review methods that assist and augment generative models by retrieving multimodal knowledge, whose formats range from images, codes, tables, graphs, to audio. Such methods offer a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. By providing an in-depth review, this survey is expected to provide scholars with a deeper understanding of the methods' applications and encourage them to adapt existing techniques to the fast-growing field of LLMs.

Canonical Correlation Analysis (CCA) has been widely applied to jointly embed multiple views of data in a maximally correlated latent space. However, the alignment between various data perspectives, which is required by traditional approaches, is unclear in many practical cases. In this work we propose a new framework Aligned Canonical Correlation Analysis (ACCA), to address this challenge by iteratively solving the alignment and multi-view embedding.

Vehicle-to-Everything (V2X) communication is expected to accomplish a long-standing goal of the Connected and Autonomous Vehicle (CAV) community to bring connected vehicles to roads on a large scale. A major challenge, and perhaps the biggest hurdle on the path towards this goal is the scalability issues associated with it, especially when vehicular safety is concerned. As a major stakeholder, 3rd Generation Partnership Project (3GPP) based Cellular V2X (C-V2X) community has long been trying to research on whether vehicular networks are able to support the safety-critical applications in high-density vehicular scenarios. This paper attempts to answer this by first presenting an overview on the scalability challenges faced by 3GPP Release 14 Long Term Evolution C-V2X (LTE-V2X) using the PC5 sidelink interface for low and heavy-density traffic scenarios. Next, it demonstrates a series of solutions that address network congestion, packet losses and other scalability issues associated with LTE-V2X to enable this communication technology for commercial deployment. In addition, a brief survey is provided into 3GPP Release 16 5G New Radio V2X (NR-V2X) that utilizes the NR sidelink interface and works as an evolution of C-V2X towards better performance for V2X communications including new enhanced V2X (eV2X) scenarios that possess ultra-low-latency and high-reliability requirements.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

北京阿比特科技有限公司