亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The depth/thermal information is beneficial for detecting salient object with conventional RGB images. However, in dual-modal salient object detection (SOD) model, the robustness against noisy inputs and modality missing is crucial but rarely studied. To tackle this problem, we introduce \textbf{Co}nditional Dropout and \textbf{LA}nguage-driven(\textbf{CoLA}) framework comprising two core components. 1) Language-driven Quality Assessment (LQA): Leveraging a pretrained vision-language model with a prompt learner, the LQA recalibrates image contributions without requiring additional quality annotations. This approach effectively mitigates the impact of noisy inputs. 2) Conditional Dropout (CD): A learning method to strengthen the model's adaptability in scenarios with missing modalities, while preserving its performance under complete modalities. The CD serves as a plug-in training scheme that treats modality-missing as conditions, strengthening the overall robustness of various dual-modal SOD models. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art dual-modal SOD models, under both modality-complete and modality-missing conditions. We will release source code upon acceptance.

相關內容

The aim of surface defect detection is to identify and localise abnormal regions on the surfaces of captured objects, a task that's increasingly demanded across various industries. Current approaches frequently fail to fulfil the extensive demands of these industries, which encompass high performance, consistency, and fast operation, along with the capacity to leverage the entirety of the available training data. Addressing these gaps, we introduce SuperSimpleNet, an innovative discriminative model that evolved from SimpleNet. This advanced model significantly enhances its predecessor's training consistency, inference time, as well as detection performance. SuperSimpleNet operates in an unsupervised manner using only normal training images but also benefits from labelled abnormal training images when they are available. SuperSimpleNet achieves state-of-the-art results in both the supervised and the unsupervised settings, as demonstrated by experiments across four challenging benchmark datasets. Code: //github.com/blaz-r/SuperSimpleNet .

The performance of WiFi-based localization systems is affected by the spatial accuracy of WiFi AP. Compared with the imprecision of AP location and antenna separation, the imprecision of AP's or antenna's orientation is more important in real scenarios, including AP rotation and antenna irregular tilt. In this paper, we propose Anteumbler that non-invasively, accurately and efficiently measures the orientation of each antenna in physical space. Based on the fact that the received power is maximized when a Tx-Rx antenna pair is perfectly aligned, we construct a spatial angle model that can obtain the antennas' orientations without prior knowledge. However, the sampling points of traversing the spatial angle need to cover the entire space. We use the orthogonality of antenna directivity and polarization and adopt an iterative algorithm to reduce the sampling points by hundreds of times, which greatly improves the efficiency. To achieve the required antenna orientation accuracy, we eliminate the influence of propagation distance using a dual plane intersection model and filter out ambient noise. Our real-world experiments with six antenna types, two antenna layouts and two antenna separations show that Anteumbler achieves median errors below 6 degree for both elevation and azimuth angles, and is robust to NLoS and dynamic environments. Last but not least, for the reverse localization system, we deploy Anteumbler over LocAP and reduce the antenna separation error by 10 mm, while for the user localization system, we deploy Anteumbler over SpotFi and reduce the user localization error by more than 1 m.

We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering).

Diffusion models have emerged as frontrunners in text-to-image generation for their impressive capabilities. Nonetheless, their fixed image resolution during training often leads to challenges in high-resolution image generation, such as semantic inaccuracies and object replication. This paper introduces MegaFusion, a novel approach that extends existing diffusion-based text-to-image generation models towards efficient higher-resolution generation without additional fine-tuning or extra adaptation. Specifically, we employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions, allowing for high-resolution image generation in a coarse-to-fine manner. Moreover, by integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution. The versatility and efficacy of MegaFusion make it universally applicable to both latent-space and pixel-space diffusion models, along with other derivative models. Extensive experiments confirm that MegaFusion significantly boosts the capability of existing models to produce images of megapixels and various aspect ratios, while only requiring about 40% of the original computational cost.

Person Re-Identification (ReID) aims to retrieve relevant individuals in non-overlapping camera images and has a wide range of applications in the field of public safety. In recent years, with the development of Vision Transformer (ViT) and self-supervised learning techniques, the performance of person ReID based on self-supervised pre-training has been greatly improved. Person ReID requires extracting highly discriminative local fine-grained features of the human body, while traditional ViT is good at extracting context-related global features, making it difficult to focus on local human body features. To this end, this article introduces the recently emerged Masked Image Modeling (MIM) self-supervised learning method into person ReID, and effectively extracts high-quality global and local features through large-scale unsupervised pre-training by combining masked image modeling and discriminative contrastive learning, and then conducts supervised fine-tuning training in the person ReID task. This person feature extraction method based on ViT with masked image modeling (PersonViT) has the good characteristics of unsupervised, scalable, and strong generalization capabilities, overcoming the problem of difficult annotation in supervised person ReID, and achieves state-of-the-art results on publicly available benchmark datasets, including MSMT17, Market1501, DukeMTMC-reID, and Occluded-Duke. The code and pre-trained models of the PersonViT method are released at \url{//github.com/hustvl/PersonViT} to promote further research in the person ReID field.

To achieve dexterity comparable to that of humans, robots must intelligently process tactile sensor data. Taxel-based tactile signals often have low spatial-resolution, with non-standardized representations. In this paper, we propose a novel framework, HyperTaxel, for learning a geometrically-informed representation of taxel-based tactile signals to address challenges associated with their spatial resolution. We use this representation and a contrastive learning objective to encode and map sparse low-resolution taxel signals to high-resolution contact surfaces. To address the uncertainty inherent in these signals, we leverage joint probability distributions across multiple simultaneous contacts to improve taxel hyper-resolution. We evaluate our representation by comparing it with two baselines and present results that suggest our representation outperforms the baselines. Furthermore, we present qualitative results that demonstrate the learned representation captures the geometric features of the contact surface, such as flatness, curvature, and edges, and generalizes across different objects and sensor configurations. Moreover, we present results that suggest our representation improves the performance of various downstream tasks, such as surface classification, 6D in-hand pose estimation, and sim-to-real transfer.

Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large tensor of logits, this paper introduces a novel RECE (REduced Cross-Entropy) loss. RECE significantly reduces memory consumption while allowing one to enjoy the state-of-the-art performance of full CE loss. Experimental results on various datasets show that RECE cuts training peak memory usage by up to 12 times compared to existing methods while retaining or exceeding performance metrics of CE loss. The approach also opens up new possibilities for large-scale applications in other domains.

We propose an image restoration algorithm that can control the perceptual quality and/or the mean square error (MSE) of any pre-trained model, trading one over the other at test time. Our algorithm is few-shot: Given about a dozen images restored by the model, it can significantly improve the perceptual quality and/or the MSE of the model for newly restored images without further training. Our approach is motivated by a recent theoretical result that links between the minimum MSE (MMSE) predictor and the predictor that minimizes the MSE under a perfect perceptual quality constraint. Specifically, it has been shown that the latter can be obtained by optimally transporting the output of the former, such that its distribution matches the source data. Thus, to improve the perceptual quality of a predictor that was originally trained to minimize MSE, we approximate the optimal transport by a linear transformation in the latent space of a variational auto-encoder, which we compute in closed-form using empirical means and covariances. Going beyond the theory, we find that applying the same procedure on models that were initially trained to achieve high perceptual quality, typically improves their perceptual quality even further. And by interpolating the results with the original output of the model, we can improve their MSE on the expense of perceptual quality. We illustrate our method on a variety of degradations applied to general content images of arbitrary dimensions.

Aerial imagery analysis is critical for many research fields. However, obtaining frequent high-quality aerial images is not always accessible due to its high effort and cost requirements. One solution is to use the Ground-to-Aerial (G2A) technique to synthesize aerial images from easily collectible ground images. However, G2A is rarely studied, because of its challenges, including but not limited to, the drastic view changes, occlusion, and range of visibility. In this paper, we present a novel Geometric Preserving Ground-to-Aerial (G2A) image synthesis (GPG2A) model that can generate realistic aerial images from ground images. GPG2A consists of two stages. The first stage predicts the Bird's Eye View (BEV) segmentation (referred to as the BEV layout map) from the ground image. The second stage synthesizes the aerial image from the predicted BEV layout map and text descriptions of the ground image. To train our model, we present a new multi-modal cross-view dataset, namely VIGORv2 which is built upon VIGOR with newly collected aerial images, maps, and text descriptions. Our extensive experiments illustrate that GPG2A synthesizes better geometry-preserved aerial images than existing models. We also present two applications, data augmentation for cross-view geo-localization and sketch-based region search, to further verify the effectiveness of our GPG2A. The code and data will be publicly available.

Food image classification is the fundamental step in image-based dietary assessment, which aims to estimate participants' nutrient intake from eating occasion images. A common challenge of food images is the intra-class diversity and inter-class similarity, which can significantly hinder classification performance. To address this issue, we introduce a novel multi-modal contrastive learning framework called FMiFood, which learns more discriminative features by integrating additional contextual information, such as food category text descriptions, to enhance classification accuracy. Specifically, we propose a flexible matching technique that improves the similarity matching between text and image embeddings to focus on multiple key information. Furthermore, we incorporate the classification objectives into the framework and explore the use of GPT-4 to enrich the text descriptions and provide more detailed context. Our method demonstrates improved performance on both the UPMC-101 and VFN datasets compared to existing methods.

北京阿比特科技有限公司