Two combined numerical methods for solving time-varying semilinear differential-algebraic equations (DAEs) are obtained. The convergence and correctness of the methods are proved. When constructing the methods, time-varying spectral projectors which can be found numerically are used. This enables to numerically solve the DAE in the original form without additional analytical transformations. To improve the accuracy of the second method, recalculation is used. The developed methods are applicable to the DAEs with the continuous nonlinear part which may not be differentiable in time, and the restrictions of the type of the global Lipschitz condition are not used in the presented theorems on the DAE global solvability and the convergence of the methods. This extends the scope of methods. The fulfillment of the conditions of the global solvability theorem ensures the existence of a unique exact solution on any given time interval, which enables to seek an approximate solution also on any time interval. Numerical examples illustrating the capabilities of the methods and their effectiveness in various situations are provided. To demonstrate this, mathematical models of the dynamics of electrical circuits are considered. It is shown that the results of the theoretical and numerical analyses of these models are consistent.
The classical Minkowski problem for convex bodies has deeply influenced the development of differential geometry. During the past several decades, abundant mathematical theories have been developed for studying the solutions of the Minkowski problem, however, the numerical solution of this problem has been largely left behind, with only few methods available to achieve that goal. In this article, focusing on the two-dimensional Minkowski problem with Dirichlet boundary conditions, we introduce two solution methods, both based on operator-splitting. One of these two methods deals directly with the Dirichlet condition, while the other method uses an approximation of this Dirichlet condition. This relaxation of the Dirichlet condition makes this second method better suited than the first one to treat those situations where the Minkowski and the Dirichlet condition are not compatible. Both methods are generalizations of the solution method for the canonical Monge-Amp\`{e}re equation discussed by Glowinski et al. (Journal of Scientific Computing, 79(1), 1-47, 2019); as such they take advantage of a divergence formulation of the Minkowski problem, well-suited to a mixed finite element approximation, and to the the time-discretization via an operator-splitting scheme, of an associated initial value problem. Our methodology can be easily implemented on convex domains of rather general shape (with curved boundaries, possibly). The numerical experiments we performed validate both methods and show that if one uses continuous piecewise affine finite element approximations of the smooth solution of the Minkowski problem and of its three second order derivatives, these two methods provide nearly second order accuracy for the $L^2$ and $L^{\infty}$ error. One can extend easily the methods discussed in this article, to address the solution of three-dimensional Minkowski problem.
To quantify uncertainties in inverse problems of partial differential equations (PDEs), we formulate them into statistical inference problems using Bayes' formula. Recently, well-justified infinite-dimensional Bayesian analysis methods have been developed to construct dimension-independent algorithms. However, there are three challenges for these infinite-dimensional Bayesian methods: prior measures usually act as regularizers and are not able to incorporate prior information efficiently; complex noises, such as more practical non-i.i.d. distributed noises, are rarely considered; and time-consuming forward PDE solvers are needed to estimate posterior statistical quantities. To address these issues, an infinite-dimensional inference framework has been proposed based on the infinite-dimensional variational inference method and deep generative models. Specifically, by introducing some measure equivalence assumptions, we derive the evidence lower bound in the infinite-dimensional setting and provide possible parametric strategies that yield a general inference framework called the Variational Inverting Network (VINet). This inference framework can encode prior and noise information from learning examples. In addition, relying on the power of deep neural networks, the posterior mean and variance can be efficiently and explicitly generated in the inference stage. In numerical experiments, we design specific network structures that yield a computable VINet from the general inference framework. Numerical examples of linear inverse problems of an elliptic equation and the Helmholtz equation are presented to illustrate the effectiveness of the proposed inference framework.
Moving average processes driven by exponential-tailed L\'evy noise are important extensions of their Gaussian counterparts in order to capture deviations from Gaussianity, more flexible dependence structures, and sample paths with jumps. Popular examples include non-Gaussian Ornstein--Uhlenbeck processes and type G Mat\'ern stochastic partial differential equation random fields. This paper is concerned with the open problem of determining their extremal dependence structure. We leverage the fact that such processes admit approximations on grids or triangulations that are used in practice for efficient simulations and inference. These approximations can be expressed as special cases of a class of linear transformations of independent, exponential-tailed random variables, that bridge asymptotic dependence and independence in a novel, tractable way. This result is of independent interest since models that can capture both extremal dependence regimes are scarce and the construction of such flexible models is an active area of research. This new fundamental result allows us to show that the integral approximation of general moving average processes with exponential-tailed L\'evy noise is asymptotically independent when the mesh is fine enough. Under mild assumptions on the kernel function we also derive the limiting residual tail dependence function. For the popular exponential-tailed Ornstein--Uhlenbeck process we prove that it is asymptotically independent, but with a different residual tail dependence function than its Gaussian counterpart. Our results are illustrated through simulation studies.
In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.
The Koopman operator has become an essential tool for data-driven analysis, prediction and control of complex systems, the main reason being the enormous potential of identifying linear function space representations of nonlinear dynamics from measurements. Until now, the situation where for large-scale systems, we (i) only have access to partial observations (i.e., measurements, as is very common for experimental data) or (ii) deliberately perform coarse graining (for efficiency reasons) has not been treated to its full extent. In this paper, we address the pitfall associated with this situation, that the classical EDMD algorithm does not automatically provide a Koopman operator approximation for the underlying system if we do not carefully select the number of observables. Moreover, we show that symmetries in the system dynamics can be carried over to the Koopman operator, which allows us to massively increase the model efficiency. We also briefly draw a connection to domain decomposition techniques for partial differential equations and present numerical evidence using the Kuramoto--Sivashinsky equation.
A nonlinear optimization method is proposed for the solution of inverse medium problems with spatially varying properties. To avoid the prohibitively large number of unknown control variables resulting from standard grid-based representations, the misfit is instead minimized in a small subspace spanned by the first few eigenfunctions of a judicious elliptic operator, which itself depends on the previous iteration. By repeatedly adapting both the dimension and the basis of the search space, regularization is inherently incorporated at each iteration without the need for extra Tikhonov penalization. Convergence is proved under an angle condition, which is included into the resulting \emph{Adaptive Spectral Inversion} (ASI) algorithm. The ASI approach compares favorably to standard grid-based inversion using $L^2$-Tikhonov regularization when applied to an elliptic inverse problem. The improved accuracy resulting from the newly included angle condition is further demonstrated via numerical experiments from time-dependent inverse scattering problems.
Complex interactions between two opposing agents frequently occur in domains of machine learning, game theory, and other application domains. Quantitatively analyzing the strategies involved can provide an objective basis for decision-making. One such critical scenario is shot-taking in football, where decisions, such as whether the attacker should shoot or pass the ball and whether the defender should attempt to block the shot, play a crucial role in the outcome of the game. However, there are currently no effective data-driven and/or theory-based approaches to analyzing such situations. To address this issue, we proposed a novel framework to analyze such scenarios based on game theory, where we estimate the expected payoff with machine learning (ML) models, and additional features for ML models were extracted with a theory-based shot block model. Conventionally, successes or failures (1 or 0) are used as payoffs, while a success shot (goal) is extremely rare in football. Therefore, we proposed the Expected Probability of Shot On Target (xSOT) metric to evaluate players' actions even if the shot results in no goal; this allows for effective differentiation and comparison between different shots and even enables counterfactual shot situation analysis. In our experiments, we have validated the framework by comparing it with baseline and ablated models. Furthermore, we have observed a high correlation between the xSOT and existing metrics. This alignment of information suggests that xSOT provides valuable insights. Lastly, as an illustration, we studied optimal strategies in the World Cup 2022 and analyzed a shot situation in EURO 2020.
The notion of tail adversarial stability has been proven useful in obtaining limit theorems for tail dependent time series. Its implication and advantage over the classical strong mixing framework has been examined for max-linear processes, but not yet studied for additive linear processes. In this article, we fill this gap by verifying the tail adversarial stability condition for regularly varying additive linear processes. We in addition consider extensions of the result to a stochastic volatility generalization and to a max-linear counterpart. We also address the invariance of tail adversarial stability under monotone transforms. Some implications for limit theorems in statistical context are also discussed.
Latent linear dynamical systems with Bernoulli observations provide a powerful modeling framework for identifying the temporal dynamics underlying binary time series data, which arise in a variety of contexts such as binary decision-making and discrete stochastic processes (e.g., binned neural spike trains). Here we develop a spectral learning method for fast, efficient fitting of probit-Bernoulli latent linear dynamical system (LDS) models. Our approach extends traditional subspace identification methods to the Bernoulli setting via a transformation of the first and second sample moments. This results in a robust, fixed-cost estimator that avoids the hazards of local optima and the long computation time of iterative fitting procedures like the expectation-maximization (EM) algorithm. In regimes where data is limited or assumptions about the statistical structure of the data are not met, we demonstrate that the spectral estimate provides a good initialization for Laplace-EM fitting. Finally, we show that the estimator provides substantial benefits to real world settings by analyzing data from mice performing a sensory decision-making task.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.