亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Byzantine agreement allows n processes to decide on a common value, in spite of arbitrary failures. The seminal Dolev-Reischuk bound states that any deterministic solution to Byzantine agreement exchanges Omega(n^2) bits. In synchronous networks, solutions with optimal O(n^2) bit complexity, optimal fault tolerance, and no cryptography have been established for over three decades. However, these solutions lack robustness under adverse network conditions. Therefore, research has increasingly focused on Byzantine agreement for partially synchronous networks. Numerous solutions have been proposed for the partially synchronous setting. However, these solutions are notoriously hard to prove correct, and the most efficient cryptography-free algorithms still require O(n^3) exchanged bits in the worst case. In this paper, we introduce Oper, the first generic transformation of deterministic Byzantine agreement algorithms from synchrony to partial synchrony. Oper requires no cryptography, is optimally resilient (n >= 3t+1, where t is the maximum number of failures), and preserves the worst-case per-process bit complexity of the transformed synchronous algorithm. Leveraging Oper, we present the first partially synchronous Byzantine agreement algorithm that (1) achieves optimal O(n^2) bit complexity, (2) requires no cryptography, and (3) is optimally resilient (n >= 3t+1), thus showing that the Dolev-Reischuk bound is tight even in partial synchrony. Moreover, we adapt Oper for long values and obtain several new partially synchronous algorithms with improved complexity and weaker (or completely absent) cryptographic assumptions.

相關內容

Electronic Health Records (EHRs) contain a wealth of patient data; however, the sparsity of EHRs data often presents significant challenges for predictive modeling. Conventional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies of patient representations. To address these issues, we introduce PRISM, a framework that indirectly imputes data by leveraging prototype representations of similar patients, thus ensuring compact representations that preserve patient information. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature considering missing statuses. Additionally, PRISM introduces a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.

Entity matching (EM) is a critical step in entity resolution. Recently, entity matching based on large language models (LLMs) has shown great promise. However, current LLM-based entity matching approaches typically follow a binary matching paradigm that ignores the global consistency between different records. In this paper, we investigate various methodologies for LLM-based entity matching that incorporate record interactions from different perspectives. Specifically, we comprehensively compare three representative strategies: matching, comparing, and selecting, and analyze their respective advantages and challenges in diverse scenarios. Based on our findings, we further design a compositional entity matching (ComEM) framework that leverages the composition of multiple strategies and LLMs. In this way, ComEM can benefit from the advantages of different sides and achieve improvements in both effectiveness and efficiency. Experimental results show that ComEM not only achieves significant performance gains on various datasets but also reduces the cost of LLM-based entity matching in real-world application.

Finding the best solution is a common objective in combinatorial optimization (CO). In practice, directly handling constraints is often challenging, incorporating them into the objective function as the penalties. However, balancing these penalties to achieve the desired solution is time-consuming. Additionally, formulated objective functions and constraints often only approximate real-world scenarios, where the optimal solution is not necessarily the best solution for the original real-world problem. One solution is to obtain (i) penalty-diversified solutions with varying penalty strengths for the former issue and (ii) variation-diversified solutions with different characteristics for the latter issue. Users can then post-select the desired solution from these diverse solutions. However, efficiently finding these diverse solutions is more difficult than identifying one. This study introduces Continual Tensor Relaxation Annealing (CTRA) for unsupervised-learning (UL)-based CO solvers, a computationally efficient framework for finding these diverse solutions in a single training run. The key idea is to leverage representation learning capability to automatically and efficiently learn common representations and parallelization. Numerical experiments show that CTRA enables UL-based solvers to find these diverse solutions much faster than repeatedly running existing UL-based solvers.

The study of behavioral diversity in Multi-Agent Reinforcement Learning (MARL) is a nascent yet promising field. In this context, the present work deals with the question of how to control the diversity of a multi-agent system. With no existing approaches to control diversity to a set value, current solutions focus on blindly promoting it via intrinsic rewards or additional loss functions, effectively changing the learning objective and lacking a principled measure for it. To address this, we introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL. Multimedia results are available on the paper's website: //sites.google.com/view/dico-marl.

We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an $\epsilon$-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks.

We initiate the study of counting Markov Equivalence Classes (MEC) under logical constraints. MECs are equivalence classes of Directed Acyclic Graphs (DAGs) that encode the same conditional independence structure among the random variables of a DAG model. Observational data can only allow to infer a DAG model up to Markov Equivalence. However, Markov equivalent DAGs can represent different causal structures, potentially super-exponentially many. Hence, understanding MECs combinatorially is critical to understanding the complexity of causal inference. In this paper, we focus on analysing MECs of size one, with logical constraints on the graph topology. We provide a polynomial-time algorithm (w.r.t. the number of nodes) for enumerating essential DAGs (the only members of an MEC of size one) with arbitrary logical constraints expressed in first-order logic with two variables and counting quantifiers (C^2). Our work brings together recent developments in tractable first-order model counting and combinatorics of MECs.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司