亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Detection-based tracking is one of the main methods of multi-object tracking. It can obtain good tracking results when using excellent detectors but it may associate wrong targets when facing overlapping and low-confidence detections. To address this issue, this paper proposes a multi-object tracker based on shape constraint and confidence named SCTracker. In the data association stage, an Intersection of Union distance with shape constraints is applied to calculate the cost matrix between tracks and detections, which can effectively avoid the track tracking to the wrong target with the similar position but inconsistent shape, so as to improve the accuracy of data association. Additionally, the Kalman Filter based on the detection confidence is used to update the motion state to improve the tracking performance when the detection has low confidence. Experimental results on MOT 17 dataset show that the proposed method can effectively improve the tracking performance of multi-object tracking.

相關內容

Detection and tracking of moving objects is an essential component in environmental perception for autonomous driving. In the flourishing field of multi-view 3D camera-based detectors, different transformer-based pipelines are designed to learn queries in 3D space from 2D feature maps of perspective views, but the dominant dense BEV query mechanism is computationally inefficient. This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage fully-sparse detector that incorporates sparse queries, sparse attention with box-wise sampling, and sparse prediction. SRCN3D adopts a cascade structure with the twin-track update of both a fixed number of query boxes and latent query features. Our novel sparse feature sampling module only utilizes local 2D region of interest (RoI) features calculated by the projection of 3D query boxes for further box refinement, leading to a fully-convolutional and deployment-friendly pipeline. For multi-object tracking, motion features, query features and RoI features are comprehensively utilized in multi-hypotheses data association. Extensive experiments on nuScenes dataset demonstrate that SRCN3D achieves competitive performance in both 3D object detection and multi-object tracking tasks, while also exhibiting superior efficiency compared to transformer-based methods. Code and models are available at //github.com/synsin0/SRCN3D.

The preimage or inverse image of a predefined subset of the range of a deterministic function, called inverse set for short, is the set in the domain whose image equals that predefined subset. To quantify the uncertainty present in estimating such a set, one can construct data-dependent inner and outer confidence sets that serve as sub- and super-sets respectively of the true inverse set. Existing methods require strict assumptions with emphasis on dense functional data. In this work, we generalize the estimation of inverse sets to wider range data types by rigorously proving that, by inverting pre-constructed simultaneous confidence intervals (SCI), confidence sets of multiple levels can be simultaneously constructed with the desired confidence non-asymptotically. We provide valid non-parametric bootstrap algorithm and open source code for constructing confidence sets on dense functional data and multiple regression data. The method is exemplified in two distinct applications: identifying regions in North America experiencing rising temperatures using dense functional data and evaluating the impact of statin usage and COVID-19 on the clinical outcomes of hospitalized patients using logistic regression data.

We present Asynchronous Stochastic Parallel Pose Graph Optimization (ASAPP), the first asynchronous algorithm for distributed pose graph optimization (PGO) in multi-robot simultaneous localization and mapping. By enabling robots to optimize their local trajectory estimates without synchronization, ASAPP offers resiliency against communication delays and alleviates the need to wait for stragglers in the network. Furthermore, ASAPP can be applied on the rank-restricted relaxations of PGO, a crucial class of non-convex Riemannian optimization problems that underlies recent breakthroughs on globally optimal PGO. Under bounded delay, we establish the global first-order convergence of ASAPP using a sufficiently small stepsize. The derived stepsize depends on the worst-case delay and inherent problem sparsity, and furthermore matches known result for synchronous algorithms when there is no delay. Numerical evaluations on simulated and real-world datasets demonstrate favorable performance compared to state-of-the-art synchronous approach, and show ASAPP's resilience against a wide range of delays in practice.

3D single object tracking with point clouds is a critical task in 3D computer vision. Previous methods usually input the last two frames and use the predicted box to get the template point cloud in previous frame and the search area point cloud in the current frame respectively, then use similarity-based or motion-based methods to predict the current box. Although these methods achieved good tracking performance, they ignore the historical information of the target, which is important for tracking. In this paper, compared to inputting two frames of point clouds, we input multi-frame of point clouds to encode the spatio-temporal information of the target and learn the motion information of the target implicitly, which could build the correlations among different frames to track the target in the current frame efficiently. Meanwhile, rather than directly using the point feature for feature fusion, we first crop the point cloud features into many patches and then use sparse attention mechanism to encode the patch-level similarity and finally fuse the multi-frame features. Extensive experiments show that our method achieves competitive results on challenging large-scale benchmarks (62.6% in KITTI and 49.66% in NuScenes).

Multiple Object Tracking (MOT) is crucial to autonomous vehicle perception. End-to-end transformer-based algorithms, which detect and track objects simultaneously, show great potential for the MOT task. However, most existing methods focus on image-based tracking with a single object category. In this paper, we propose an end-to-end transformer-based MOT algorithm (MotionTrack) with multi-modality sensor inputs to track objects with multiple classes. Our objective is to establish a transformer baseline for the MOT in an autonomous driving environment. The proposed algorithm consists of a transformer-based data association (DA) module and a transformer-based query enhancement module to achieve MOT and Multiple Object Detection (MOD) simultaneously. The MotionTrack and its variations achieve better results (AMOTA score at 0.55) on the nuScenes dataset compared with other classical baseline models, such as the AB3DMOT, the CenterTrack, and the probabilistic 3D Kalman filter. In addition, we prove that a modified attention mechanism can be utilized for DA to accomplish the MOT, and aggregate history features to enhance the MOD performance.

The elastic net combines lasso and ridge regression to fuse the sparsity property of lasso with the grouping property of ridge regression. The connections between ridge regression and gradient descent and between lasso and forward stagewise regression have previously been shown. Similar to how the elastic net generalizes lasso and ridge regression, we introduce elastic gradient descent, a generalization of gradient descent and forward stagewise regression. We theoretically analyze elastic gradient descent and compare it to the elastic net and forward stagewise regression. Parts of the analysis are based on elastic gradient flow, a piecewise analytical construction, obtained for elastic gradient descent with infinitesimal step size. We also compare elastic gradient descent to the elastic net on real and simulated data and show that it provides similar solution paths, but is several orders of magnitude faster. Compared to forward stagewise regression, elastic gradient descent selects a model that, although still sparse, provides considerably lower prediction and estimation errors.

Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.

Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.

北京阿比特科技有限公司