亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-language (VL) understanding tasks evaluate models' comprehension of complex visual scenes through multiple-choice questions. However, we have identified two dataset biases that models can exploit as shortcuts to resolve various VL tasks correctly without proper understanding. The first type of dataset bias is \emph{Unbalanced Matching} bias, where the correct answer overlaps the question and image more than the incorrect answers. The second type of dataset bias is \emph{Distractor Similarity} bias, where incorrect answers are overly dissimilar to the correct answer but significantly similar to other incorrect answers within the same sample. To address these dataset biases, we first propose Adversarial Data Synthesis (ADS) to generate synthetic training and debiased evaluation data. We then introduce Intra-sample Counterfactual Training (ICT) to assist models in utilizing the synthesized training data, particularly the counterfactual data, via focusing on intra-sample differentiation. Extensive experiments demonstrate the effectiveness of ADS and ICT in consistently improving model performance across different benchmarks, even in domain-shifted scenarios.

相關內容

Speculative decoding enhances the efficiency of large language models (LLMs) by leveraging a draft model to draft for a larger target model to review. However, drafting in speculative decoding involves slow autoregressive generation and generating tokens of different importance with the same time allocation. These two inefficiencies lead to its suboptimal performance. To address this issue, we introduce Cascade Speculative Drafting (CS. Drafting), a novel approach that employs two types of cascades. The Vertical Cascade eliminates autoregressive generation from neural models. The Horizontal Cascade constitutes efficient time allocation in drafting with its optimality supported by our theoretical analysis. Combining both cascades, our CS. Drafting algorithm has achieved up to 72 percent additional speedup over speculative decoding in our experiments while keeping the same output distribution.

This paper explores preference distillation for large vision language models (LVLMs), improving their ability to generate helpful and faithful responses anchoring the visual context. We first build a vision-language feedback (VLFeedback) dataset utilizing AI annotation. Specifically, responses are generated by models sampled from 12 LVLMs, conditioned on multi-modal instructions sourced from various datasets. We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations. Furthermore, the preference supervision is distilled into Qwen-VL-Chat through the direct preference optimization (DPO) method. The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities, respectively. Silkie also demonstrates reduced hallucination by setting a new state-of-the-art score of 3.02 on the MMHal-Bench benchmark. Further analysis shows that DPO with our VLFeedback dataset mainly boosts the fine-grained perception and complex cognition abilities of LVLMs, leading to more comprehensive improvements compared to human-annotated preference datasets.

The `pre-train, prompt, predict' paradigm of large language models (LLMs) has achieved remarkable success in open-domain question answering (OD-QA). However, few works explore this paradigm in the scenario of multi-document question answering (MD-QA), a task demanding a thorough understanding of the logical associations among the contents and structures of different documents. To fill this crucial gap, we propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting LLMs for MD-QA, which consists of a graph construction module and a graph traversal module. For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables), and edges denoting the semantic/lexical similarity between passages or intra-document structural relations. For graph traversal, we design an LLM-based graph traversal agent that navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency. Concurrently, the graph traversal agent acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design for LLMs. Our code: //github.com/YuWVandy/KG-LLM-MDQA.

Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.

The development of autoregressive modeling (AM) in computer vision lags behind natural language processing (NLP) in self-supervised pre-training. This is mainly caused by the challenge that images are not sequential signals and lack a natural order when applying autoregressive modeling. In this study, inspired by human beings' way of grasping an image, i.e., focusing on the main object first, we present a semantic-aware autoregressive image modeling (SemAIM) method to tackle this challenge. The key insight of SemAIM is to autoregressive model images from the semantic patches to the less semantic patches. To this end, we first calculate a semantic-aware permutation of patches according to their feature similarities and then perform the autoregression procedure based on the permutation. In addition, considering that the raw pixels of patches are low-level signals and are not ideal prediction targets for learning high-level semantic representation, we also explore utilizing the patch features as the prediction targets. Extensive experiments are conducted on a broad range of downstream tasks, including image classification, object detection, and instance/semantic segmentation, to evaluate the performance of SemAIM. The results demonstrate SemAIM achieves state-of-the-art performance compared with other self-supervised methods. Specifically, with ViT-B, SemAIM achieves 84.1% top-1 accuracy for fine-tuning on ImageNet, 51.3% AP and 45.4% AP for object detection and instance segmentation on COCO, which outperforms the vanilla MAE by 0.5%, 1.0%, and 0.5%, respectively.

Low-precision fine-tuning of language models has gained prominence as a cost-effective and energy-efficient approach to deploying large-scale models in various applications. However, this approach is susceptible to the existence of outlier values in activation. The outlier values in the activation can negatively affect the performance of fine-tuning language models in the low-precision regime since they affect the scaling factor and thus make representing smaller values harder. This paper investigates techniques for mitigating outlier activation in low-precision integer fine-tuning of the language models. Our proposed novel approach enables us to represent the outlier activation values in 8-bit integers instead of floating-point (FP16) values. The benefit of using integers for outlier values is that it enables us to use operator tiling to avoid performing 16-bit integer matrix multiplication to address this problem effectively. We provide theoretical analysis and supporting experiments to demonstrate the effectiveness of our approach in improving the robustness and performance of low-precision fine-tuned language models.

Graph Neural Networks (GNNs) demonstrate their significance by effectively modeling complex interrelationships within graph-structured data. To enhance the credibility and robustness of GNNs, it becomes exceptionally crucial to bolster their ability to capture causal relationships. However, despite recent advancements that have indeed strengthened GNNs from a causal learning perspective, conducting an in-depth analysis specifically targeting the causal modeling prowess of GNNs remains an unresolved issue. In order to comprehensively analyze various GNN models from a causal learning perspective, we constructed an artificially synthesized dataset with known and controllable causal relationships between data and labels. The rationality of the generated data is further ensured through theoretical foundations. Drawing insights from analyses conducted using our dataset, we introduce a lightweight and highly adaptable GNN module designed to strengthen GNNs' causal learning capabilities across a diverse range of tasks. Through a series of experiments conducted on both synthetic datasets and other real-world datasets, we empirically validate the effectiveness of the proposed module.

Safe deployment of large language models (LLMs) may benefit from a reliable method for assessing their generated content to determine when to abstain or to selectively generate. While likelihood-based metrics such as perplexity are widely employed, recent research has demonstrated the limitations of using sequence-level probability estimates given by LLMs as reliable indicators of generation quality. Conversely, LLMs have demonstrated strong calibration at the token level, particularly when it comes to choosing correct answers in multiple-choice questions or evaluating true/false statements. In this work, we reformulate open-ended generation tasks into token-level prediction tasks, and leverage LLMs' superior calibration at the token level. We instruct an LLM to self-evaluate its answers, employing either a multi-way comparison or a point-wise evaluation approach, with the option to include a ``None of the above'' option to express the model's uncertainty explicitly. We benchmark a range of scoring methods based on self-evaluation and evaluate their performance in selective generation using TruthfulQA and TL;DR. Through experiments with PaLM-2 and GPT-3, we demonstrate that self-evaluation based scores not only improve accuracy, but also correlate better with the overall quality of generated content.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司