Graph Neural Networks (GNNs) demonstrate their significance by effectively modeling complex interrelationships within graph-structured data. To enhance the credibility and robustness of GNNs, it becomes exceptionally crucial to bolster their ability to capture causal relationships. However, despite recent advancements that have indeed strengthened GNNs from a causal learning perspective, conducting an in-depth analysis specifically targeting the causal modeling prowess of GNNs remains an unresolved issue. In order to comprehensively analyze various GNN models from a causal learning perspective, we constructed an artificially synthesized dataset with known and controllable causal relationships between data and labels. The rationality of the generated data is further ensured through theoretical foundations. Drawing insights from analyses conducted using our dataset, we introduce a lightweight and highly adaptable GNN module designed to strengthen GNNs' causal learning capabilities across a diverse range of tasks. Through a series of experiments conducted on both synthetic datasets and other real-world datasets, we empirically validate the effectiveness of the proposed module.
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks, such as chain-of-thought reasoning. However, most of the existing approaches to enhance this ability rely heavily on data-driven methods, while neglecting the structural aspects of the model's reasoning capacity. We find that while LLMs can manage individual reasoning steps well, they struggle with maintaining consistency across an entire reasoning chain. To solve this, we introduce planning tokens at the start of each reasoning step, serving as a guide for the model, and add their embeddings to the model parameters. Our approach requires a negligible increase in trainable parameters (just 0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme. We demonstrate our method's effectiveness by applying it to three different LLMs, showing notable accuracy improvements across three math word problem datasets w.r.t. standard fine-tuning baselines.
Neural additive models (NAMs) enhance the transparency of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we augment them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) facilitating the ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
We identify morphisms of strong profunctors as a categorification of quantum supermaps. These black-box generalisations of diagrams-with-holes are hence placed within the broader field of profunctor optics, as morphisms in the category of copresheaves on concrete networks. This enables the first construction of abstract logical connectives such as tensor products and negations for supermaps in a totally theory-independent setting. These logical connectives are found to be all that is needed to abstractly model the key structural features of the quantum theory of supermaps: black-box indefinite causal order, black-box definite causal order, and the factorisation of definitely causally ordered supermaps into concrete circuit diagrams. We demonstrate that at the heart of these factorisation theorems lies the Yoneda lemma and the notion of representability.
Contextual Markov decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable. While CMDPs serve as an important framework to model many real-world applications with time-varying environments, they are largely unexplored from theoretical perspective. In this paper, we study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights. For both models, we propose novel model-based algorithms and show that they enjoy guaranteed $\epsilon$-suboptimality gap with desired polynomial sample complexity. In particular, instantiating our result for the first model to the tabular CMDP improves the existing result by removing the reachability assumption. Our result for the second model is the first-known result for such a type of function approximation models. Comparison between our results for the two models further indicates that having context-varying features leads to much better sample efficiency than having common representations for all contexts under linear CMDPs.
Due to the inability to receive signals from the Global Navigation Satellite System (GNSS) in extreme conditions, achieving accurate and robust navigation for Unmanned Aerial Vehicles (UAVs) is a challenging task. Recently emerged, vision-based navigation has been a promising and feasible alternative to GNSS-based navigation. However, existing vision-based techniques are inadequate in addressing flight deviation caused by environmental disturbances and inaccurate position predictions in practical settings. In this paper, we present a novel angle robustness navigation paradigm to deal with flight deviation in point-to-point navigation tasks. Additionally, we propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module to accurately predict direction angles for high-precision navigation. To evaluate the vision-based navigation methods, we collect a new dataset termed as UAV_AR368. Furthermore, we design the Simulation Flight Testing Instrument (SFTI) using Google Earth to simulate different flight environments, thereby reducing the expenses associated with real flight testing. Experiment results demonstrate that the proposed model outperforms the state-of-the-art by achieving improvements of 26.0% and 45.6% in the success rate of arrival under ideal and disturbed circumstances, respectively.
Federated learning (FL) systems face performance challenges in dealing with heterogeneous devices and non-identically distributed data across clients. We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments to address these issues. Our aggregation method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities. Additionally, we also immediately provide an updated global model to clients after they upload their local models to reduce idle time and improve training efficiency. We evaluate our approach within an AFL deployment consisting of 10 simulated clients with heterogeneous compute constraints and non-IID data. The simulation results, using the FashionMNIST dataset, demonstrate over 10% and 19% improvement in global model accuracy compared to state-of-the-art methods PAPAYA and FedAsync, respectively. Our dynamic aggregation method allows reliable global model training despite limiting client resources and statistical data heterogeneity. This improves robustness and scalability for real-world FL deployments.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.