We introduce a high-dimensional factor model with time-varying loadings. We cover both stationary and nonstationary factors to increase the possibilities of applications. We propose an estimation procedure based on two stages. First, we estimate common factors by principal components. In the second step, considering the estimated factors as observed, the time-varying loadings are estimated by an iterative generalized least squares procedure using wavelet functions. We investigate the finite sample features by some Monte Carlo simulations. Finally, we apply the model to study the Nord Pool power market's electricity prices and loads.
In this paper, we consider the problem of determining the presence of a given signal in a high-dimensional observation with unknown covariance matrix by using an adaptive matched filter. Traditionally such filters are formed from the sample covariance matrix of some given training data, but, as is well-known, the performance of such filters is poor when the number of training data $n$ is not much larger than the data dimension $p$. We thus seek a covariance estimator to replace sample covariance. To account for the fact that $n$ and $p$ may be of comparable size, we adopt the "large-dimensional asymptotic model" in which $n$ and $p$ go to infinity in a fixed ratio. Under this assumption, we identify a covariance estimator that is asymptotically detection-theoretic optimal within a general shrinkage class inspired by C. Stein, and we give consistent estimates for conditional false-alarm and detection rate of the corresponding adaptive matched filter.
Unbiased and consistent variance estimators generally do not exist for design-based treatment effect estimators because experimenters never observe more than one potential outcome for any unit. The problem is exacerbated by interference and complex experimental designs. In this paper, we consider variance estimation for linear treatment effect estimators under interference and arbitrary experimental designs. Experimenters must accept conservative estimators in this setting, but they can strive to minimize the conservativeness. We show that this task can be interpreted as an optimization problem in which one aims to find the lowest estimable upper bound of the true variance given one's risk preference and knowledge of the potential outcomes. We characterize the set of admissible bounds in the class of quadratic forms, and we demonstrate that the optimization problem is a convex program for many natural objectives. This allows experimenters to construct less conservative variance estimators, making inferences about treatment effects more informative. The resulting estimators are guaranteed to be conservative regardless of whether the background knowledge used to construct the bound is correct, but the estimators are less conservative if the knowledge is reasonably accurate.
We investigate several rank-based change-point procedures for the covariance operator in a sequence of observed functions, called FKWC change-point procedures. Our methods allow the user to test for one change-point, to test for an epidemic period, or to detect an unknown amount of change-points in the data. Our methodology combines functional data depth values with the traditional Kruskal Wallis test statistic. By taking this approach we have no need to estimate the covariance operator, which makes our methods computationally cheap. For example, our procedure can identify multiple change-points in $O(n\log n)$ time. Our procedure is fully non-parametric and is robust to outliers through the use of data depth ranks. We show that when $n$ is large, our methods have simple behaviour under the null hypothesis.We also show that the FKWC change-point procedures are $n^{-1/2}$-consistent. In addition to asymptotic results, we provide a finite sample accuracy result for our at-most-one change-point estimator. In simulation, we compare our methods against several others. We also present an application of our methods to intraday asset returns and f-MRI scans.
Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
Cross view feature fusion is the key to address the occlusion problem in human pose estimation. The current fusion methods need to train a separate model for every pair of cameras making them difficult to scale. In this work, we introduce MetaFuse, a pre-trained fusion model learned from a large number of cameras in the Panoptic dataset. The model can be efficiently adapted or finetuned for a new pair of cameras using a small number of labeled images. The strong adaptation power of MetaFuse is due in large part to the proposed factorization of the original fusion model into two parts (1) a generic fusion model shared by all cameras, and (2) lightweight camera-dependent transformations. Furthermore, the generic model is learned from many cameras by a meta-learning style algorithm to maximize its adaptation capability to various camera poses. We observe in experiments that MetaFuse finetuned on the public datasets outperforms the state-of-the-arts by a large margin which validates its value in practice.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.
The task of multi-person human pose estimation in natural scenes is quite challenging. Existing methods include both top-down and bottom-up approaches. The main advantage of bottom-up methods is its excellent tradeoff between estimation accuracy and computational cost. We follow this path and aim to design smaller, faster, and more accurate neural networks for the regression of keypoints and limb association vectors. These two regression tasks are naturally dependent on each other. In this work, we propose a dual-path network specially designed for multi-person human pose estimation, and compare our performance with the openpose network in aspects of model size, forward speed, and estimation accuracy.
In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.