Despite recent progress in enhancing the privacy of federated learning (FL) via differential privacy (DP), the trade-off of DP between privacy protection and performance is still underexplored for real-world medical scenario. In this paper, we propose to optimize the trade-off under the context of client-level DP, which focuses on privacy during communications. However, FL for medical imaging involves typically much fewer participants (hospitals) than other domains (e.g., mobile devices), thus ensuring clients be differentially private is much more challenging. To tackle this problem, we propose an adaptive intermediary strategy to improve performance without harming privacy. Specifically, we theoretically find splitting clients into sub-clients, which serve as intermediaries between hospitals and the server, can mitigate the noises introduced by DP without harming privacy. Our proposed approach is empirically evaluated on both classification and segmentation tasks using two public datasets, and its effectiveness is demonstrated with significant performance improvements and comprehensive analytical studies. Code is available at: //github.com/med-air/Client-DP-FL.
We study existing approaches to leverage off-the-shelf Natural Language Inference (NLI) models for the evaluation of summary faithfulness and argue that these are sub-optimal due to the granularity level considered for premises and hypotheses. That is, the smaller content unit considered as hypothesis is a sentence and premises are made up of a fixed number of document sentences. We propose a novel approach, namely InFusE, that uses a variable premise size and simplifies summary sentences into shorter hypotheses. Departing from previous studies which focus on single short document summarisation, we analyse NLI based faithfulness evaluation for diverse summarisation tasks. We introduce DiverSumm, a new benchmark comprising long form summarisation (long documents and summaries) and diverse summarisation tasks (e.g., meeting and multi-document summarisation). In experiments, InFusE obtains superior performance across the different summarisation tasks. Our code and data are available at //github.com/HJZnlp/infuse.
Partial label learning (PLL) learns from training examples each associated with multiple candidate labels, among which only one is valid. In recent years, benefiting from the strong capability of dealing with ambiguous supervision and the impetus of modern data augmentation methods, consistency regularization-based PLL methods have achieved a series of successes and become mainstream. However, as the partial annotation becomes insufficient, their performances drop significantly. In this paper, we leverage easily accessible unlabeled examples to facilitate the partial label consistency regularization. In addition to a partial supervised loss, our method performs a controller-guided consistency regularization at both the label-level and representation-level with the help of unlabeled data. To minimize the disadvantages of insufficient capabilities of the initial supervised model, we use the controller to estimate the confidence of each current prediction to guide the subsequent consistency regularization. Furthermore, we dynamically adjust the confidence thresholds so that the number of samples of each class participating in consistency regularization remains roughly equal to alleviate the problem of class-imbalance. Experiments show that our method achieves satisfactory performances in more practical situations, and its modules can be applied to existing PLL methods to enhance their capabilities.
Visual question answering (VQA) can be fundamentally crucial for promoting robotic-assisted surgical education. In practice, the needs of trainees are constantly evolving, such as learning more surgical types, adapting to different robots, and learning new surgical instruments and techniques for one surgery. Therefore, continually updating the VQA system by a sequential data stream from multiple resources is demanded in robotic surgery to address new tasks. In surgical scenarios, the storage cost and patient data privacy often restrict the availability of old data when updating the model, necessitating an exemplar-free continual learning (CL) setup. However, prior studies overlooked two vital problems of the surgical domain: i) large domain shifts from diverse surgical operations collected from multiple departments or clinical centers, and ii) severe data imbalance arising from the uneven presence of surgical instruments or activities during surgical procedures. This paper proposes to address these two problems with a multimodal large language model (LLM) and an adaptive weight assignment methodology. We first develop a new multi-teacher CL framework that leverages a multimodal LLM as the additional teacher. The strong generalization ability of the LLM can bridge the knowledge gap when domain shifts and data imbalances occur. We then put forth a novel data processing method that transforms complex LLM embeddings into logits compatible with our CL framework. We further design an adaptive weight assignment approach that balances the generalization ability of the LLM and the domain expertise of the old CL model. We construct a new dataset for surgical VQA tasks, providing valuable data resources for future research. Extensive experimental results on three datasets demonstrate the superiority of our method to other advanced CL models.
With the rapid development of Large Language Models (LLMs), various explorations have arisen to utilize LLMs capability of context understanding on recommender systems. While pioneering strategies have primarily transformed traditional recommendation tasks into challenges of natural language generation, there has been a relative scarcity of exploration in the domain of session-based recommendation (SBR) due to its specificity. SBR has been primarily dominated by Graph Neural Networks, which have achieved many successful outcomes due to their ability to capture both the implicit and explicit relationships between adjacent behaviors. The structural nature of graphs contrasts with the essence of natural language, posing a significant adaptation gap for LLMs. In this paper, we introduce large language models with graphical Session-Based recommendation, named LLMGR, an effective framework that bridges the aforementioned gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks. This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing, leading to a more powerful session-based recommender system that can understand and recommend items within a session. Moreover, to endow the LLM with the capability to empower SBR tasks, we design a series of prompts for both auxiliary and major instruction tuning tasks. These prompts are crafted to assist the LLM in understanding graph-structured data and align textual information with nodes, effectively translating nuanced user interactions into a format that can be understood and utilized by LLM architectures. Extensive experiments on three real-world datasets demonstrate that LLMGR outperforms several competitive baselines, indicating its effectiveness in enhancing SBR tasks and its potential as a research direction for future exploration.
We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $d$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments.
Safe reinforcement learning (Safe RL) refers to a class of techniques that aim to prevent RL algorithms from violating constraints in the process of decision-making and exploration during trial and error. In this paper, a novel model-free Safe RL algorithm, formulated based on the multi-objective policy optimization framework is introduced where the policy is optimized towards optimality and safety, simultaneously. The optimality is achieved by the environment reward function that is subsequently shaped using a safety critic. The advantage of the Safety Optimized RL (SORL) algorithm compared to the traditional Safe RL algorithms is that it omits the need to constrain the policy search space. This allows SORL to find a natural tradeoff between safety and optimality without compromising the performance in terms of either safety or optimality due to strict search space constraints. Through our theoretical analysis of SORL, we propose a condition for SORL's converged policy to guarantee safety and then use it to introduce an aggressiveness parameter that allows for fine-tuning the mentioned tradeoff. The experimental results obtained in seven different robotic environments indicate a considerable reduction in the number of safety violations along with higher, or competitive, policy returns, in comparison to six different state-of-the-art Safe RL methods. The results demonstrate the significant superiority of the proposed SORL algorithm in safety-critical applications.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.