We develop two unfitted finite element methods for the Stokes equations based on Hdiv-conforming finite elements. The first method is a cut finite element discretization of the Stokes equations based on the Brezzi- Douglas-Marini elements and involves interior penalty terms to enforce tangential continuity of the velocity at interior edges in the mesh. The second method is a cut finite element discretization of a three-field for- mulation of the Stokes problem involving the vorticity, velocity, and pressure and uses the Raviart-Thomas space for the velocity. We present mixed ghost penalty stabilization terms for both methods so that the re- sulting discrete problems are stable and the divergence-free property of the Hdiv-conforming elements is preserved also for unfitted meshes. We compare the two methods numerically. Both methods exhibit robust discrete problems, optimal convergence order for the velocity, and pointwise divergence-free velocity fields, independently of the position of the boundary relative to the computational mesh.
Entropy regularized Markov decision processes have been widely used in reinforcement learning. This paper is concerned with the primal-dual formulation of the entropy regularized problems. Standard first-order methods suffer from slow convergence due to the lack of strict convexity and concavity. To address this issue, we first introduce a new quadratically convexified primal-dual formulation. The natural gradient ascent descent of the new formulation enjoys global convergence guarantee and exponential convergence rate. We also propose a new interpolating metric that further accelerates the convergence significantly. Numerical results are provided to demonstrate the performance of the proposed methods under multiple settings.
Over the past decade, Plug-and-Play (PnP) has become a popular method for reconstructing images using a modular framework consisting of a forward and prior model. The great strength of PnP is that an image denoiser can be used as a prior model while the forward model can be implemented using more traditional physics-based approaches. However, a limitation of PnP is that it reconstructs only a single deterministic image. In this paper, we introduce Generative Plug-and-Play (GPnP), a generalization of PnP to sample from the posterior distribution. As with PnP, GPnP has a modular framework using a physics-based forward model and an image denoising prior model. However, in GPnP these models are extended to become proximal generators, which sample from associated distributions. GPnP applies these proximal generators in alternation to produce samples from the posterior. We present experimental simulations using the well-known BM3D denoiser. Our results demonstrate that the GPnP method is robust, easy to implement, and produces intuitively reasonable samples from the posterior for sparse interpolation and tomographic reconstruction. Code to accompany this paper is available at //github.com/gbuzzard/generative-pnp-allerton .
We consider goal-oriented adaptive space-time finite-element discretizations of the regularized parabolic p-Laplace problem on completely unstructured simplicial space-time meshes. The adaptivity is driven by the dual-weighted residual (DWR) method since we are interested in an accurate computation of some possibly nonlinear functionals at the solution. Such functionals represent goals in which engineers are often more interested than the solution itself. The DWR method requires the numerical solution of a linear adjoint problem that provides the sensitivities for the mesh refinement. This can be done by means of the same full space-time finite element discretization as used for the primal non-linear problems. The numerical experiments presented demonstrate that this goal-oriented, full space-time finite element solver efficiently provides accurate numerical results for different functionals.
Clinical guidelines underscore the importance of regularly monitoring and surveilling arteriovenous fistula (AVF) access in hemodialysis patients to promptly detect any dysfunction. Although phono-angiography/sound analysis overcomes the limitations of standardized AVF stenosis diagnosis tool, prior studies have depended on conventional feature extraction methods, restricting their applicability in diverse contexts. In contrast, representation learning captures fundamental underlying factors that can be readily transferred across different contexts. We propose an approach based on deep denoising autoencoders (DAEs) that perform dimensionality reduction and reconstruction tasks using the waveform obtained through one-level discrete wavelet transform, utilizing representation learning. Our results demonstrate that the latent representation generated by the DAE surpasses expectations with an accuracy of 0.93. The incorporation of noise-mixing and the utilization of a noise-to-clean scheme effectively enhance the discriminative capabilities of the latent representation. Moreover, when employed to identify patient-specific characteristics, the latent representation exhibited performance by surpassing an accuracy of 0.92. Appropriate light-weighted methods can restore the detection performance of the excessively reduced dimensionality version and enable operation on less computational devices. Our findings suggest that representation learning is a more feasible approach for extracting auscultation features in AVF, leading to improved generalization and applicability across multiple tasks. The manipulation of latent representations holds immense potential for future advancements. Further investigations in this area are promising and warrant continued exploration.
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single-cell data set to test the independence between two types of single-cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.
In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Amp\`ere equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes.
This paper introduces an approach to decoupling singularly perturbed boundary value problems for fourth-order ordinary differential equations that feature a small positive parameter $\epsilon$ multiplying the highest derivative. We specifically examine Lidstone boundary conditions and demonstrate how to break down fourth-order differential equations into a system of second-order problems, with one lacking the parameter and the other featuring $\epsilon$ multiplying the highest derivative. To solve this system, we propose a mixed finite element algorithm and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. We present numerical results to validate the theoretical results and the accuracy of our method.
We propose a general framework for solving forward and inverse problems constrained by partial differential equations, where we interpolate neural networks onto finite element spaces to represent the (partial) unknowns. The framework overcomes the challenges related to the imposition of boundary conditions, the choice of collocation points in physics-informed neural networks, and the integration of variational physics-informed neural networks. A numerical experiment set confirms the framework's capability of handling various forward and inverse problems. In particular, the trained neural network generalises well for smooth problems, beating finite element solutions by some orders of magnitude. We finally propose an effective one-loop solver with an initial data fitting step (to obtain a cheap initialisation) to solve inverse problems.
In recent years, there has been a surge of interest in the development of probabilistic approaches to problems that might appear to be purely deterministic. One example of this is the solving of partial differential equations. Since numerical solvers require some approximation of the infinite-dimensional solution space, there is an inherent uncertainty to the solution that is obtained. In this work, the uncertainty associated with the finite element discretization error is modeled following the Bayesian paradigm. First, a continuous formulation is derived, where a Gaussian process prior over the solution space is updated based on observations from a finite element discretization. Due to intractable integrals, a second, finer, discretization is introduced that is assumed sufficiently dense to represent the true solution field. The prior distribution assumed over the fine discretization is then updated based on observations from the coarse discretization. This yields a posterior distribution with a mean close to the deterministic fine-scale solution that is endowed with an uncertainty measure. The prior distribution over the solution space is defined implicitly by assigning a white noise distribution to the right-hand side. This allows for a sparse representation of the prior distribution, and guarantees that the prior samples have the appropriate level of smoothness for the problem at hand. Special attention is paid to inhomogeneous Dirichlet and Neumann boundary conditions, and how these can be used to enhance this white noise prior distribution. For various problems, we demonstrate how regions of large discretization error are captured in the structure of the posterior standard deviation. The effects of the hyperparameters and observation noise on the quality of the posterior mean and standard deviation are investigated in detail.
Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.