The work explores a specific scenario for structural computational optimization based on the following elements: (a) a relaxed optimization setting considering the ersatz (bi-material) approximation, (b) a treatment based on a nonsmoothed characteristic function field as a topological design variable, (c) the consistent derivation of a relaxed topological derivative whose determination is simple, general and efficient, (d) formulation of the overall increasing cost function topological sensitivity as a suitable optimality criterion, and (e) consideration of a pseudo-time framework for the problem solution, ruled by the problem constraint evolution. In this setting, it is shown that the optimization problem can be analytically solved in a variational framework, leading to, nonlinear, closed-form algebraic solutions for the characteristic function, which are then solved, in every time-step, via fixed point methods based on a pseudo-energy cutting algorithm combined with the exact fulfillment of the constraint, at every iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness (mesh dependency) of the topological solution, is then easily solved via a Laplacian smoothing of that pseudo-energy. In the aforementioned context, a number of (3D) topological structural optimization benchmarks are solved, and the solutions obtained with the explored closed-form solution method, are analyzed, and compared, with their solution through an alternative level set method. Although the obtained results, in terms of the cost function and topology designs, are very similar in both methods, the associated computational cost is about five times smaller in the closedform solution method this possibly being one of its advantages.
Federated learning (FL) is an attractive paradigm for making use of rich distributed data while protecting data privacy. Nonetheless, nonideal communication links and limited transmission resources may hinder the implementation of fast and accurate FL. In this paper, we study joint optimization of communications and FL based on analog aggregation transmission in realistic wireless networks. We first derive closed-form expressions for the expected convergence rate of FL over the air, which theoretically quantify the impact of analog aggregation on FL. Based on the analytical results, we develop a joint optimization model for accurate FL implementation, which allows a parameter server to select a subset of workers and determine an appropriate power scaling factor. Since the practical setting of FL over the air encounters unobservable parameters, we reformulate the joint optimization of worker selection and power allocation using controlled approximation. Finally, we efficiently solve the resulting mixed-integer programming problem via a simple yet optimal finite-set search method by reducing the search space. Simulation results show that the proposed solutions developed for realistic wireless analog channels outperform a benchmark method, and achieve comparable performance of the ideal case where FL is implemented over noise-free wireless channels.
In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using the integral values on edges as degrees of freedom for solving elliptic interface problems. We show that those IFE methods without penalties are not guaranteed to converge optimally if the tangential derivative of the exact solution and the jump of the coefficient are not zero on the interface. A nontrivial counter example is also provided to support our theoretical analysis. To recover the optimal convergence rates, we develop a new nonconforming IFE method with additional terms locally on interface edges. The new method is parameter-free which removes the limitation of the conventional partially penalized IFE method. We show the IFE basis functions are unisolvent on arbitrary triangles which is not considered in the literature. Furthermore, different from multipoint Taylor expansions, we derive the optimal approximation capabilities of both the Crouzeix-Raviart and the rotated-$Q_1$ IFE spaces via a unified approach which can handle the case of variable coefficients easily. Finally, optimal error estimates in both $H^1$- and $L^2$- norms are proved and confirmed with numerical experiments.
A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acyclic matching of size $k$ in $G$. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs of maximum degree three and arbitrarily large girth. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter $k$. On the other hand, the problem is fixed parameter tractable with respect to $k$, for line graphs, $C_4$-free graphs and every proper minor-closed class of graphs (including bounded tree-width and planar graphs).
Risk-limiting audits (RLAs), an ingredient in evidence-based elections, are increasingly common. They are a rigorous statistical means of ensuring that electoral results are correct, usually without having to perform an expensive full recount -- at the cost of some controlled probability of error. A recently developed approach for conducting RLAs, SHANGRLA, provides a flexible framework that can encompass a wide variety of social choice functions and audit strategies. Its flexibility comes from reducing sufficient conditions for outcomes to be correct to canonical `assertions' that have a simple mathematical form. Assertions have been developed for auditing various social choice functions including plurality, multi-winner plurality, super-majority, Hamiltonian methods, and instant runoff voting. However, there is no systematic approach to building assertions. Here, we show that assertions with linear dependence on transformations of the votes can easily be transformed to canonical form for SHANGRLA. We illustrate the approach by constructing assertions for party-list elections such as Hamiltonian free list elections and elections using the D'Hondt method, expanding the set of social choice functions to which SHANGRLA applies directly.
The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems.
In this paper, we study a general low-rank matrix recovery problem with linear measurements corrupted by some noise. The objective is to understand under what conditions on the restricted isometry property (RIP) of the problem local search methods can find the ground truth with a small error. By analyzing the landscape of the non-convex problem, we first propose a global guarantee on the maximum distance between an arbitrary local minimizer and the ground truth under the assumption that the RIP constant is smaller than $1/2$. We show that this distance shrinks to zero as the intensity of the noise reduces. Our new guarantee is sharp in terms of the RIP constant and is much stronger than the existing results. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. Next, we prove the strict saddle property, which guarantees the global convergence of the perturbed gradient descent method in polynomial time. The developed results demonstrate how the noise intensity and the RIP constant of the problem affect the landscape of the problem.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.