亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acyclic matching of size $k$ in $G$. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs of maximum degree three and arbitrarily large girth. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter $k$. On the other hand, the problem is fixed parameter tractable with respect to $k$, for line graphs, $C_4$-free graphs and every proper minor-closed class of graphs (including bounded tree-width and planar graphs).

相關內容

We propose a numerical method based on physics-informed Random Projection Neural Networks for the solution of Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) with a focus on stiff problems. We address an Extreme Learning Machine with a single hidden layer with radial basis functions having as widths uniformly distributed random variables, while the values of the weights between the input and the hidden layer are set equal to one. The numerical solution of the IVPs is obtained by constructing a system of nonlinear algebraic equations, which is solved with respect to the output weights by the Gauss-Newton method, using a simple adaptive scheme for adjusting the time interval of integration. To assess its performance, we apply the proposed method for the solution of four benchmark stiff IVPs, namely the Prothero-Robinson, van der Pol, ROBER and HIRES problems. Our method is compared with an adaptive Runge-Kutta method based on the Dormand-Prince pair, and a variable-step variable-order multistep solver based on numerical differentiation formulas, as implemented in the \texttt{ode45} and \texttt{ode15s} MATLAB functions, respectively. We show that the proposed scheme yields good approximation accuracy, thus outperforming \texttt{ode45} and \texttt{ode15s}, especially in the cases where steep gradients arise. Furthermore, the computational times of our approach are comparable with those of the two MATLAB solvers for practical purposes.

A matroid $\mathcal{M}$ on a set $E$ of elements has the $\alpha$-partition property, for some $\alpha>0$, if it is possible to (randomly) construct a partition matroid $\mathcal{P}$ on (a subset of) elements of $\mathcal{M}$ such that every independent set of $\mathcal{P}$ is independent in $\mathcal{M}$ and for any weight function $w:E\to\mathbb{R}_{\geq 0}$, the expected value of the optimum of the matroid secretary problem on $\mathcal{P}$ is at least an $\alpha$-fraction of the optimum on $\mathcal{M}$. We show that the complete binary matroid, ${\cal B}_d$ on $\mathbb{F}_2^d$ does not satisfy the $\alpha$-partition property for any constant $\alpha>0$ (independent of $d$). Furthermore, we refute a recent conjecture of B\'erczi, Schwarcz, and Yamaguchi by showing the same matroid is $2^d/d$-colorable but cannot be reduced to an $\alpha 2^d/d$-colorable partition matroid for any $\alpha$ that is sublinear in $d$.

This paper analyzes a necessary and sufficient condition for the change-making problem to be solvable with a greedy algorithm. The change-making problem is to minimize the number of coins used to pay a given value in a specified currency system. This problem is NP-hard, and therefore the greedy algorithm does not always yield an optimal solution. Yet for almost all real currency systems, the greedy algorithm outputs an optimal solution. A currency system for which the greedy algorithm returns an optimal solution for any value of payment is called a canonical system. Canonical systems with at most five types of coins have been characterized in previous studies. In this paper, we give characterization of canonical systems with six types of coins, and we propose a partial generalization of characterization of canonical systems.

Satisfiability is considered the canonical NP-complete problem and is used as a starting point for hardness reductions in theory, while in practice heuristic SAT solving algorithms can solve large-scale industrial SAT instances very efficiently. This disparity between theory and practice is believed to be a result of inherent properties of industrial SAT instances that make them tractable. Two characteristic properties seem to be prevalent in the majority of real-world SAT instances, heterogeneous degree distribution and locality. To understand the impact of these two properties on SAT, we study the proof complexity of random k-SAT models that allow to control heterogeneity and locality. Our findings show that heterogeneity alone does not make SAT easy as heterogeneous random k-SAT instances have superpolynomial resolution size. This implies intractability of these instances for modern SAT-solvers. On the other hand, modeling locality with an underlying geometry leads to small unsatisfiable subformulas, which can be found within polynomial time. A key ingredient for the result on geometric random k-SAT can be found in the complexity of higher-order Voronoi diagrams. As an additional technical contribution, we show a linear upper bound on the number of non-empty Voronoi regions, that holds for points with random positions in a very general setting. In particular, it covers arbitrary p-norms, higher dimensions, and weights affecting the area of influence of each point multiplicatively. This is in stark contrast to quadratic lower bounds for the worst case.

In standard number-in-hand multi-party communication complexity, performance is measured as the total number of bits transmitted globally in the network. In this paper, we study a variation called local communication complexity in which performance instead measures the maximum number of bits sent or received at any one player. We focus on a simple model where $n$ players, each with one input bit, execute a protocol by exchanging messages to compute a function on the $n$ input bits. We ask what can and cannot be solved with a small local communication complexity in this setting. We begin by establishing a non-trivial lower bound on the local complexity for a specific function by proving that counting the number of $1$'s among the first $17$ input bits distributed among the participants requires a local complexity strictly greater than $1$. We further investigate whether harder counting problems of this type can yield stronger lower bounds, providing a largely negative answer by showing that constant local complexity is sufficient to count the number $1$ bits over the entire input, and therefore compute any symmetric function. In addition to counting, we show that both sorting and searching can be computed in constant local complexity. We then use the counting solution as a subroutine to demonstrate that constant local complexity is also sufficient to compute many standard modular arithmetic operations on two operands, including: comparisons, addition, subtraction, multiplication, division, and exponentiation. Finally we establish that function $GCD(x,y)$ where $x$ and $y$ are in the range $[1,n]$ has local complexity of $O(1)$. Our work highlights both new techniques for proving lower bounds on this metric and the power of even a small amount of local communication.

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

This paper explores the problem of matching entities across different knowledge graphs. Given a query entity in one knowledge graph, we wish to find the corresponding real-world entity in another knowledge graph. We formalize this problem and present two large-scale datasets for this task based on exiting cross-ontology links between DBpedia and Wikidata, focused on several hundred thousand ambiguous entities. Using a classification-based approach, we find that a simple multi-layered perceptron based on representations derived from RDF2Vec graph embeddings of entities in each knowledge graph is sufficient to achieve high accuracy, with only small amounts of training data. The contributions of our work are datasets for examining this problem and strong baselines on which future work can be based.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司