This paper analyzes a necessary and sufficient condition for the change-making problem to be solvable with a greedy algorithm. The change-making problem is to minimize the number of coins used to pay a given value in a specified currency system. This problem is NP-hard, and therefore the greedy algorithm does not always yield an optimal solution. Yet for almost all real currency systems, the greedy algorithm outputs an optimal solution. A currency system for which the greedy algorithm returns an optimal solution for any value of payment is called a canonical system. Canonical systems with at most five types of coins have been characterized in previous studies. In this paper, we give characterization of canonical systems with six types of coins, and we propose a partial generalization of characterization of canonical systems.
We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends non-trivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback--Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology.
Parareal is a well-studied algorithm for numerically integrating systems of time-dependent differential equations by parallelising the temporal domain. Given approximate initial values at each temporal sub-interval, the algorithm locates a solution in a fixed number of iterations using a predictor-corrector, stopping once a tolerance is met. This iterative process combines solutions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical integrators. In this paper, we introduce a stochastic parareal algorithm aimed at accelerating the convergence of the deterministic parareal algorithm. Instead of providing the predictor-corrector with a deterministically located set of initial values, the stochastic algorithm samples initial values from dynamically varying probability distributions in each temporal sub-interval. All samples are then propagated in parallel using the expensive integrator. The set of sampled initial values yielding the most continuous (smoothest) trajectory across consecutive sub-intervals are fed into the predictor-corrector, converging in fewer iterations than the deterministic algorithm with a given probability. The performance of the stochastic algorithm, implemented using various probability distributions, is illustrated on low-dimensional systems of ordinary differential equations (ODEs). We provide numerical evidence that when the number of sampled initial values is large enough, stochastic parareal converges almost certainly in fewer iterations than the deterministic algorithm, maintaining solution accuracy. Given its stochastic nature, we also highlight that multiple simulations of stochastic parareal return a distribution of solutions that can represent a measure of uncertainty over the ODE solution.
This paper studies capturability and push recovery for quadrupedal locomotion. Despite the rich literature on capturability analysis and push recovery control for legged robots, existing tools are developed mainly for bipeds or humanoids. Distinct quadrupedal features such as point contacts and multiple swinging legs prevent direct application of these methods. To address this gap, we propose a switched systems model for quadruped dynamics, and instantiate the abstract viability concept for quadrupedal locomotion with a time-based gait. Capturability is characterized through a novel specification of dynamically balanced states that addresses the time-varying nature of quadrupedal locomotion and balance. A linear inverted pendulum (LIP) model is adopted to demonstrate the theory and show how the newly developed quadrupedal capturability can be used in motion planning for quadrupedal push recovery. We formulate and solve an explicit model predictive control (EMPC) problem whose optimal solution fully characterizes quadrupedal capturability with the LIP. Given this analysis, an optimization-based planning scheme is devised for determining footsteps and center of mass references during push recovery. To validate the effectiveness of the overall framework, we conduct numerous simulation and hardware experiments. Simulation results illustrate the necessity of considering dynamic balance for quadrupedal capturability, and the significant improvement in disturbance rejection with the proposed strategy. Experimental validations on a replica of the Mini Cheetah quadruped demonstrate an up to 100% improvement as compared with state-of-the-art.
We consider a variant of the standard Bayesian mechanism, where players evaluate their outcomes and constraints in an ex-ante manner. Such a model captures a major form of modern online advertising where an advertiser is concerned with her/his expected utility over a time period and her/his type may change over time. We are interested in the incentive compatibility (IC) problem of such Bayesian mechanism. Under very mild conditions on the mechanism environments, we give a full characterization of IC via the taxation principle and show, perhaps surprisingly, that such IC mechanisms are fully characterized by the so-called auto-bidding mechanisms, which are pervasively fielded in the online advertising industry.
Using information-theoretic principles, we consider the generalization error (gen-error) of iterative semi-supervised learning (SSL) algorithms that iteratively generate pseudo-labels for a large amount of unlabelled data to progressively refine the model parameters. In contrast to most previous works that {\em bound} the gen-error, we provide an {\em exact} expression for the gen-error and particularize it to the binary Gaussian mixture model. Our theoretical results suggest that when the class conditional variances are not too large, the gen-error decreases with the number of iterations, but quickly saturates. On the flip side, if the class conditional variances (and so amount of overlap between the classes) are large, the gen-error increases with the number of iterations. To mitigate this undesirable effect, we show that regularization can reduce the gen-error. The theoretical results are corroborated by extensive experiments on the MNIST and CIFAR datasets in which we notice that for easy-to-distinguish classes, the gen-error improves after several pseudo-labelling iterations, but saturates afterwards, and for more difficult-to-distinguish classes, regularization improves the generalization performance.
In this short article, we showcase the derivation of the optimal (minimum error variance) estimator, when one part of the stochastic LTI system output is not measured but is able to be predicted from the measured system outputs. Similar derivations have been done before but not using state-space representation.
Cluster analysis aims at partitioning data into groups or clusters. In applications, it is common to deal with problems where the number of clusters is unknown. Bayesian mixture models employed in such applications usually specify a flexible prior that takes into account the uncertainty with respect to the number of clusters. However, a major empirical challenge involving the use of these models is in the characterisation of the induced prior on the partitions. This work introduces an approach to compute descriptive statistics of the prior on the partitions for three selected Bayesian mixture models developed in the areas of Bayesian finite mixtures and Bayesian nonparametrics. The proposed methodology involves computationally efficient enumeration of the prior on the number of clusters in-sample (termed as ``data clusters'') and determining the first two prior moments of symmetric additive statistics characterising the partitions. The accompanying reference implementation is made available in the R package 'fipp'. Finally, we illustrate the proposed methodology through comparisons and also discuss the implications for prior elicitation in applications.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.