亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this short article, we showcase the derivation of the optimal (minimum error variance) estimator, when one part of the stochastic LTI system output is not measured but is able to be predicted from the measured system outputs. Similar derivations have been done before but not using state-space representation.

相關內容

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

For autonomous quadruped robot navigation in various complex environments, a typical SOTA system is composed of four main modules -- mapper, global planner, local planner, and command-tracking controller -- in a hierarchical manner. In this paper, we build a robust and safe local planner which is designed to generate a velocity plan to track a coarsely planned path from the global planner. Previous works used waypoint-based methods (e.g. Proportional-Differential control and pure pursuit) which simplify the path tracking problem to local point-goal navigation. However, they suffer from frequent collisions in geometrically complex and narrow environments because of two reasons; the global planner uses a coarse and inaccurate model and the local planner is unable to track the global plan sufficiently well. Currently, deep learning methods are an appealing alternative because they can learn safety and path feasibility from experience more accurately. However, existing deep learning methods are not capable of planning for a long horizon. In this work, we propose a learning-based fully autonomous navigation framework composed of three innovative elements: a learned forward dynamics model (FDM), an online sampling-based model-predictive controller, and an informed trajectory sampler (ITS). Using our framework, a quadruped robot can autonomously navigate in various complex environments without a collision and generate a smoother command plan compared to the baseline method. Furthermore, our method can reactively handle unexpected obstacles on the planned path and avoid them. Project page //awesomericky.github.io/projects/FDM_ITS_navigation/.

This paper focuses on stochastic saddle point problems with decision-dependent distributions. These are problems whose objective is the expected value of a stochastic payoff function, where random variables are drawn from a distribution induced by a distributional map. For general distributional maps, the problem of finding saddle points is in general computationally burdensome, even if the distribution is known. To enable a tractable solution approach, we introduce the notion of equilibrium points -- which are saddle points for the stationary stochastic minimax problem that they induce -- and provide conditions for their existence and uniqueness. We demonstrate that the distance between the two solution types is bounded provided that the objective has a strongly-convex-strongly-concave payoff and a Lipschitz continuous distributional map. We develop deterministic and stochastic primal-dual algorithms and demonstrate their convergence to the equilibrium point. In particular, by modeling errors emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error bounds in expectation and in high probability that hold for each iteration. Moreover, we show convergence to a neighborhood almost surely. Finally, we investigate a condition on the distributional map -- which we call opposing mixture dominance -- that ensures that the objective is strongly-convex-strongly-concave. We tailor the convergence results for the primal-dual algorithms to this opposing mixture dominance setup.

We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.

We propose a stochastic conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully increasing the batch size over the course of the algorithm's execution, which leads to computing full gradients. In contrast, the proposed method, equipped with a stochastic average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques. In applications we put special emphasis on problems with a large number of separable constraints. Such problems are prevalent among semidefinite programming (SDP) formulations arising in machine learning and theoretical computer science. We provide numerical experiments on matrix completion, unsupervised clustering, and sparsest-cut SDPs.

Multi-scale problems, where variables of interest evolve in different time-scales and live in different state-spaces. can be found in many fields of science. Here, we introduce a new recursive methodology for Bayesian inference that aims at estimating the static parameters and tracking the dynamic variables of these kind of systems. Although the proposed approach works in rather general multi-scale systems, for clarity we analyze the case of a heterogeneous multi-scale model with 3 time-scales (static parameters, slow dynamic state variables and fast dynamic state variables). The proposed scheme, based on nested filtering methodology of P\'erez-Vieites et al. (2018), combines three intertwined layers of filtering techniques that approximate recursively the joint posterior probability distribution of the parameters and both sets of dynamic state variables given a sequence of partial and noisy observations. We explore the use of sequential Monte Carlo schemes in the first and second layers while we use an unscented Kalman filter to obtain a Gaussian approximation of the posterior probability distribution of the fast variables in the third layer. Some numerical results are presented for a stochastic two-scale Lorenz 96 model with unknown parameters.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

北京阿比特科技有限公司