亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current model quantization methods have shown their promising capability in reducing storage space and computation complexity. However, due to the diversity of quantization forms supported by different hardware, one limitation of existing solutions is that usually require repeated optimization for different scenarios. How to construct a model with flexible quantization forms has been less studied. In this paper, we explore a one-shot network quantization regime, named Elastic Quantization Neural Networks (EQ-Net), which aims to train a robust weight-sharing quantization supernet. First of all, we propose an elastic quantization space (including elastic bit-width, granularity, and symmetry) to adapt to various mainstream quantitative forms. Secondly, we propose the Weight Distribution Regularization Loss (WDR-Loss) and Group Progressive Guidance Loss (GPG-Loss) to bridge the inconsistency of the distribution for weights and output logits in the elastic quantization space gap. Lastly, we incorporate genetic algorithms and the proposed Conditional Quantization-Aware Accuracy Predictor (CQAP) as an estimator to quickly search mixed-precision quantized neural networks in supernet. Extensive experiments demonstrate that our EQ-Net is close to or even better than its static counterparts as well as state-of-the-art robust bit-width methods. Code can be available at \href{//github.com/xuke225/EQ-Net.git}{//github.com/xuke225/EQ-Net}.

相關內容

There is a large variety of machine learning methodologies that are based on the extraction of spectral geometric information from data. However, the implementations of many of these methods often depend on traditional eigensolvers, which present limitations when applied in practical online big data scenarios. To address some of these challenges, researchers have proposed different strategies for training neural networks as alternatives to traditional eigensolvers, with one such approach known as Spectral Neural Network (SNN). In this paper, we investigate key theoretical aspects of SNN. First, we present quantitative insights into the tradeoff between the number of neurons and the amount of spectral geometric information a neural network learns. Second, we initiate a theoretical exploration of the optimization landscape of SNN's objective to shed light on the training dynamics of SNN. Unlike typical studies of convergence to global solutions of NN training dynamics, SNN presents an additional complexity due to its non-convex ambient loss function.

Generating semantic segmentation datasets has consistently been laborious and time-consuming, particularly in the context of large models or specialized domains(i.e. Medical Imaging or Remote Sensing). Specifically, large models necessitate a substantial volume of data, while datasets in professional domains frequently require the involvement of domain experts. Both scenarios are susceptible to inaccurate data labeling, which can significantly affect the ultimate performance of the trained model. This paper proposes a simple and effective label pixel-level completion method, \textbf{Label Mask AutoEncoder} (L-MAE), which fully uses the existing information in the label to generate the complete label. The proposed model are the first to apply the Mask Auto-Encoder to downstream tasks. In detail, L-MAE adopts the fusion strategy that stacks the label and the corresponding image, namely fuse map. Moreover, since some of the image information is lost when masking the fuse map, direct reconstruction may lead to poor performance. We proposed Image Patch Supplement algorithm to supplement the missing information during the mask-reconstruct process, and empirically found that an average of 4.1\% mIoU can be improved. We conducted a experiment to evaluate the efficacy of L-MAE to complete the dataset. We employed a degraded Pascal VOC dataset and the degraded dataset enhanced by L-MAE to train an identical conventional semantic segmentation model for the initial set of experiments. The results of these experiments demonstrate a performance enhancement of 13.5\% in the model trained with the L-MAE-enhanced dataset compared to the unenhanced dataset.

Modern deep learning models are over-parameterized, where different optima can result in widely varying generalization performance. The Sharpness-Aware Minimization (SAM) technique modifies the fundamental loss function that steers gradient descent methods toward flatter minima, which are believed to exhibit enhanced generalization prowess. Our study delves into a specific variant of SAM known as micro-batch SAM (mSAM). This variation involves aggregating updates derived from adversarial perturbations across multiple shards (micro-batches) of a mini-batch during training. We extend a recently developed and well-studied general framework for flatness analysis to theoretically show that SAM achieves flatter minima than SGD, and mSAM achieves even flatter minima than SAM. We provide a thorough empirical evaluation of various image classification and natural language processing tasks to substantiate this theoretical advancement. We also show that contrary to previous work, mSAM can be implemented in a flexible and parallelizable manner without significantly increasing computational costs. Our implementation of mSAM yields superior generalization performance across a wide range of tasks compared to SAM, further supporting our theoretical framework.

The one-hot vector has long been widely used in machine learning as a simple and generic method for representing discrete data. However, this method increases the number of dimensions linearly with the categorical data to be represented, which is problematic from the viewpoint of spatial computational complexity in deep learning, which requires a large amount of data. Recently, Analog Bits, a method for representing discrete data as a sequence of bits, was proposed on the basis of the high expressiveness of diffusion models. However, since the number of category types to be represented in a generation task is not necessarily at a power of two, there is a discrepancy between the range that Analog Bits can represent and the range represented as category data. If such a value is generated, the problem is that the original category value cannot be restored. To address this issue, we propose Residual Bit Vector (ResBit), which is a hierarchical bit representation. Although it is a general-purpose representation method, in this paper, we treat it as numerical data and show that it can be used as an extension of Analog Bits using Table Residual Bit Diffusion (TRBD), which is incorporated into TabDDPM, a tabular data generation method. We experimentally confirmed that TRBD can generate diverse and high-quality data from small-scale table data to table data containing diverse category values faster than TabDDPM. Furthermore, we show that ResBit can also serve as an alternative to the one-hot vector by utilizing ResBit for conditioning in GANs and as a label expression in image classification.

Time series forecasting has been a quintessential topic in data science, but traditionally, forecasting models have relied on extensive historical data. In this paper, we address a practical question: How much recent historical data is required to attain a targeted percentage of statistical prediction efficiency compared to the full time series? We propose the Pareto-Efficient Backsubsampling (PaEBack) method to estimate the percentage of the most recent data needed to achieve the desired level of prediction accuracy. We provide a theoretical justification based on asymptotic prediction theory for the AutoRegressive (AR) models. In particular, through several numerical illustrations, we show the application of the PaEBack for some recently developed machine learning forecasting methods even when the models might be misspecified. The main conclusion is that only a fraction of the most recent historical data provides near-optimal or even better relative predictive accuracy for a broad class of forecasting methods.

Deep model fusion/merging is an emerging technique that merges the parameters or predictions of multiple deep learning models into a single one. It combines the abilities of different models to make up for the biases and errors of a single model to achieve better performance. However, deep model fusion on large-scale deep learning models (e.g., LLMs and foundation models) faces several challenges, including high computational cost, high-dimensional parameter space, interference between different heterogeneous models, etc. Although model fusion has attracted widespread attention due to its potential to solve complex real-world tasks, there is still a lack of complete and detailed survey research on this technique. Accordingly, in order to understand the model fusion method better and promote its development, we present a comprehensive survey to summarize the recent progress. Specifically, we categorize existing deep model fusion methods as four-fold: (1) "Mode connectivity", which connects the solutions in weight space via a path of non-increasing loss, in order to obtain better initialization for model fusion; (2) "Alignment" matches units between neural networks to create better conditions for fusion; (3) "Weight average", a classical model fusion method, averages the weights of multiple models to obtain more accurate results closer to the optimal solution; (4) "Ensemble learning" combines the outputs of diverse models, which is a foundational technique for improving the accuracy and robustness of the final model. In addition, we analyze the challenges faced by deep model fusion and propose possible research directions for model fusion in the future. Our review is helpful in deeply understanding the correlation between different model fusion methods and practical application methods, which can enlighten the research in the field of deep model fusion.

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

北京阿比特科技有限公司