亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiphysics incompressible fluid dynamics simulations play a crucial role in understanding intricate behaviors of many complex engineering systems that involve interactions between solids, fluids, and various phases like liquid and gas. Numerical modeling of these interactions has generated significant research interest in recent decades and has led to the development of open source simulation tools and commercial software products targeting specific applications or general problem classes in computational fluid dynamics. As the demand increases for these simulations to adapt to platform heterogeneity, ensure composability between different physics models, and effectively utilize inheritance within partial differentiation systems, a fundamental reconsideration of numerical solver design becomes imperative. The discussion presented in this paper emphasizes the importance of these considerations and introduces the Flash-X approach as a potential solution. The software design strategies outlined in the article serve as a guide for Flash-X developers, providing insights into complexities associated with performance portability, composability, and sustainable development. These strategies provide a foundation for improving design of both new and existing simulation tools grappling with these challenges. By incorporating the principles outlined in the Flash-X approach, engineers and researchers can enhance the adaptability, efficiency, and overall effectiveness of their numerical solvers in the ever-evolving field of multiphysics simulations.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 統計量 · 規范化的 · 離散化 · 查準率/準確率 ·
2024 年 2 月 7 日

This study investigates the asymptotic dynamics of alternating minimization applied to optimize a bilinear non-convex function with normally distributed covariates. We employ the replica method from statistical physics in a multi-step approach to precisely trace the algorithm's evolution. Our findings indicate that the dynamics can be described effectively by a two--dimensional discrete stochastic process, where each step depends on all previous time steps, revealing a memory dependency in the procedure. The theoretical framework developed in this work is broadly applicable for the analysis of various iterative algorithms, extending beyond the scope of alternating minimization.

Sheaves are mathematical objects consisting of a base which constitutes a topological space and the data associated with each open set thereof, e.g. continuous functions defined on the open sets. Sheaves have originally been used in algebraic topology and logic. Recently, they have also modelled events such as physical experiments and natural language disambiguation processes. We extend the latter models from lexical ambiguities to discourse ambiguities arising from anaphora. To begin, we calculated a new measure of contextuality for a dataset of basic anaphoric discourses, resulting in a higher proportion of contextual models--82.9%--compared to previous work which only yielded 3.17% contextual models. Then, we show how an extension of the natural language processing challenge, known as the Winograd Schema, which involves anaphoric ambiguities can be modelled on the Bell-CHSH scenario with a contextual fraction of 0.096.

In response to the evolving landscape of quantum computing and the escalating vulnerabilities in classical cryptographic systems, our paper introduces a unified cryptographic framework. Rooted in the innovative work of Kuang et al., we leverage two novel primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). Our approach adeptly confronts the challenges posed by quantum advancements. Utilizing the Galois Permutation Group's matrix representations and inheriting its bijective and non-commutative properties, QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon's perfect secrecy to both classical and quantum-native systems. Meanwhile, HPPK, free from NP-hard problems, fortifies symmetric encryption for the plain public key. It accomplishes this by concealing the mathematical structure through modular multiplications or arithmetic representations of Galois Permutation Group over hidden rings, harnessing their partial homomorphic properties. This allows for secure computation on encrypted data during secret encapsulations, bolstering the security of the plain public key. The seamless integration of KEM and DS within HPPK cryptography yields compact key, cipher, and signature sizes, demonstrating exceptional performance. This paper organically unifies QPP and HPPK under the Galois Permutation Group, marking a significant advancement in laying the groundwork for quantum-resistant cryptographic protocols. Our contribution propels the development of secure communication systems amid the era of quantum computing.

We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density. The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio. The mean-field ODE is obtained by solving a Poisson equation for a velocity field that transports samples along the geometric mixture of the two densities, which is the path of a particular Fisher-Rao gradient flow. We employ a RKHS ansatz for the velocity field, which makes the Poisson equation tractable and enables discretization of the resulting mean-field ODE over finite samples. The mean-field ODE can be additionally be derived from a discrete-time perspective as the limit of successive linearizations of the Monge-Amp\`ere equations within a framework known as sample-driven optimal transport. We introduce a stochastic variant of our approach and demonstrate empirically that our IPS can produce high-quality samples from varied target distributions, outperforming comparable gradient-free particle systems and competitive with gradient-based alternatives.

Accurate load forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of dynamic power systems remains a challenge for traditional statistical models. For these reasons, time-series models (ARIMA) and deep-learning models (ANN, LSTM, GRU, etc.) are commonly deployed and often experience higher success. In this paper, we analyze the efficacy of the recently developed Transformer-based Neural Network model in Load forecasting. Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism. We apply several metaheuristics namely Differential Evolution to find the optimal hyperparameters of the Transformer-based Neural Network to produce accurate forecasts. Differential Evolution provides scalable, robust, global solutions to non-differentiable, multi-objective, or constrained optimization problems. Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our findings demonstrate the potential of metaheuristic-enhanced Transformer-based Neural Network models in Load forecasting accuracy and provide optimal hyperparameters for each model.

Image captioning models are typically trained by treating all samples equally, neglecting to account for mismatched or otherwise difficult data points. In contrast, recent work has shown the effectiveness of training models by scheduling the data using curriculum learning strategies. This paper contributes to this direction by actively curating difficult samples in datasets without increasing the total number of samples. We explore the effect of using three data curation methods within the training process: complete removal of an sample, caption replacement, or image replacement via a text-to-image generation model. Experiments on the Flickr30K and COCO datasets with the BLIP and BEiT-3 models demonstrate that these curation methods do indeed yield improved image captioning models, underscoring their efficacy.

Most identification laws of unknown parameters of linear regression equations (LRE) ensure only boundedness of a parametric error in the presence of additive perturbations, which is almost always unacceptable for practical scenarios. In this paper, a new identification law is proposed to overcome this drawback and guarantee asymptotic convergence of the unknown parameters estimation error to zero in case the mentioned additive perturbation meets special averaging conditions. Such law is successfully applied to state reconstruction problem. Theoretical results are illustrated by numerical simulations.

Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability $\eta(x)=\mathbb{P}(Y=1\mid X=x)$, we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of $2\eta(x)-1$ and apply the method to real datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司