亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Area Under the ROC Curve (AUC) is an important model metric for evaluating binary classifiers, and many algorithms have been proposed to optimize AUC approximately. It raises the question of whether the generally insignificant gains observed by previous studies are due to inherent limitations of the metric or the inadequate quality of optimization. To better understand the value of optimizing for AUC, we present an efficient algorithm, namely AUC-opt, to find the provably optimal AUC linear classifier in $\mathbb{R}^2$, which runs in $\mathcal{O}(n_+ n_- \log (n_+ n_-))$ where $n_+$ and $n_-$ are the number of positive and negative samples respectively. Furthermore, it can be naturally extended to $\mathbb{R}^d$ in $\mathcal{O}((n_+n_-)^{d-1}\log (n_+n_-))$ by calling AUC-opt in lower-dimensional spaces recursively. We prove the problem is NP-complete when $d$ is not fixed, reducing from the \textit{open hemisphere problem}. Experiments show that compared with other methods, AUC-opt achieves statistically significant improvements on between 17 to 40 in $\mathbb{R}^2$ and between 4 to 42 in $\mathbb{R}^3$ of 50 t-SNE training datasets. However, generally the gain proves insignificant on most testing datasets compared to the best standard classifiers. Similar observations are found for nonlinear AUC methods under real-world datasets.

相關內容

We consider the problem of contextual bandits and imitation learning, where the learner lacks direct knowledge of the executed action's reward. Instead, the learner can actively query an expert at each round to compare two actions and receive noisy preference feedback. The learner's objective is two-fold: to minimize the regret associated with the executed actions, while simultaneously, minimizing the number of comparison queries made to the expert. In this paper, we assume that the learner has access to a function class that can represent the expert's preference model under appropriate link functions, and provide an algorithm that leverages an online regression oracle with respect to this function class for choosing its actions and deciding when to query. For the contextual bandit setting, our algorithm achieves a regret bound that combines the best of both worlds, scaling as $O(\min\{\sqrt{T}, d/\Delta\})$, where $T$ represents the number of interactions, $d$ represents the eluder dimension of the function class, and $\Delta$ represents the minimum preference of the optimal action over any suboptimal action under all contexts. Our algorithm does not require the knowledge of $\Delta$, and the obtained regret bound is comparable to what can be achieved in the standard contextual bandits setting where the learner observes reward signals at each round. Additionally, our algorithm makes only $O(\min\{T, d^2/\Delta^2\})$ queries to the expert. We then extend our algorithm to the imitation learning setting, where the learning agent engages with an unknown environment in episodes of length $H$ each, and provide similar guarantees for regret and query complexity. Interestingly, our algorithm for imitation learning can even learn to outperform the underlying expert, when it is suboptimal, highlighting a practical benefit of preference-based feedback in imitation learning.

In this paper, we derive results about the limiting distribution of the empirical magnetization vector and the maximum likelihood (ML) estimates of the natural parameters in the tensor Curie-Weiss Potts model. Our results reveal surprisingly new phase transition phenomena including the existence of a smooth curve in the interior of the parameter plane on which the magnetization vector and the ML estimates have mixture limiting distributions, the latter comprising of both continuous and discrete components, and a surprising superefficiency phenomenon of the ML estimates, which stipulates an $N^{-3/4}$ rate of convergence of the estimates to some non-Gaussian distribution at certain special points of one type and an $N^{-5/6}$ rate of convergence to some other non-Gaussian distribution at another special point of a different type. The last case can arise only for one particular value of the tuple of the tensor interaction order and the number of colors. These results are then used to derive asymptotic confidence intervals for the natural parameters at all points where consistent estimation is possible.

In data-driven stochastic optimization, model parameters of the underlying distribution need to be estimated from data in addition to the optimization task. Recent literature considers integrating the estimation and optimization processes by selecting model parameters that lead to the best empirical objective performance. This integrated approach, which we call integrated-estimation-optimization (IEO), can be readily shown to outperform simple estimate-then-optimize (ETO) when the model is misspecified. In this paper, we show that a reverse behavior appears when the model class is well-specified and there is sufficient data. Specifically, for a general class of nonlinear stochastic optimization problems, we show that simple ETO outperforms IEO asymptotically when the model class covers the ground truth, in the strong sense of stochastic dominance of the regret. Namely, the entire distribution of the regret, not only its mean or other moments, is always better for ETO compared to IEO. Our results also apply to constrained, contextual optimization problems where the decision depends on observed features. Whenever applicable, we also demonstrate how standard sample average approximation (SAA) performs the worst when the model class is well-specified in terms of regret, and best when it is misspecified. Finally, we provide experimental results to support our theoretical comparisons and illustrate when our insights hold in finite-sample regimes and under various degrees of misspecification.

Multi-distribution learning is a natural generalization of PAC learning to settings with multiple data distributions. There remains a significant gap between the known upper and lower bounds for PAC-learnable classes. In particular, though we understand the sample complexity of learning a VC dimension d class on $k$ distributions to be $O(\epsilon^{-2} \ln(k)(d + k) + \min\{\epsilon^{-1} dk, \epsilon^{-4} \ln(k) d\})$, the best lower bound is $\Omega(\epsilon^{-2}(d + k \ln(k)))$. We discuss recent progress on this problem and some hurdles that are fundamental to the use of game dynamics in statistical learning.

In many modern statistical problems, the limited available data must be used both to develop the hypotheses to test, and to test these hypotheses-that is, both for exploratory and confirmatory data analysis. Reusing the same dataset for both exploration and testing can lead to massive selection bias, leading to many false discoveries. Selective inference is a framework that allows for performing valid inference even when the same data is reused for exploration and testing. In this work, we are interested in the problem of selective inference for data clustering, where a clustering procedure is used to hypothesize a separation of the data points into a collection of subgroups, and we then wish to test whether these data-dependent clusters in fact represent meaningful differences within the data. Recent work by Gao et al. [2022] provides a framework for doing selective inference for this setting, where a hierarchical clustering algorithm is used for producing the cluster assignments, which was then extended to k-means clustering by Chen and Witten [2022]. Both these works rely on assuming a known covariance structure for the data, but in practice, the noise level needs to be estimated-and this is particularly challenging when the true cluster structure is unknown. In our work, we extend this work to the setting of noise with unknown variance, and provide a selective inference method for this more general setting. Empirical results show that our new method is better able to maintain high power while controlling Type I error when the true noise level is unknown.

Despite extensive studies, the underlying reason as to why overparameterized neural networks can generalize remains elusive. Existing theory shows that common stochastic optimizers prefer flatter minimizers of the training loss, and thus a natural potential explanation is that flatness implies generalization. This work critically examines this explanation. Through theoretical and empirical investigation, we identify the following three scenarios for two-layer ReLU networks: (1) flatness provably implies generalization; (2) there exist non-generalizing flattest models and sharpness minimization algorithms fail to generalize, and (3) perhaps most surprisingly, there exist non-generalizing flattest models, but sharpness minimization algorithms still generalize. Our results suggest that the relationship between sharpness and generalization subtly depends on the data distributions and the model architectures and sharpness minimization algorithms do not only minimize sharpness to achieve better generalization. This calls for the search for other explanations for the generalization of over-parameterized neural networks.

Principal Component Analysis (PCA) is a fundamental tool for data visualization, denoising, and dimensionality reduction. It is widely popular in Statistics, Machine Learning, Computer Vision, and related fields. However, PCA is well-known to fall prey to outliers and often fails to detect the true underlying low-dimensional structure within the dataset. Following the Median of Means (MoM) philosophy, recent supervised learning methods have shown great success in dealing with outlying observations without much compromise to their large sample theoretical properties. This paper proposes a PCA procedure based on the MoM principle. Called the \textbf{M}edian of \textbf{M}eans \textbf{P}rincipal \textbf{C}omponent \textbf{A}nalysis (MoMPCA), the proposed method is not only computationally appealing but also achieves optimal convergence rates under minimal assumptions. In particular, we explore the non-asymptotic error bounds of the obtained solution via the aid of the Rademacher complexities while granting absolutely no assumption on the outlying observations. The derived concentration results are not dependent on the dimension because the analysis is conducted in a separable Hilbert space, and the results only depend on the fourth moment of the underlying distribution in the corresponding norm. The proposal's efficacy is also thoroughly showcased through simulations and real data applications.

Density power divergence (DPD) [Basu et al. (1998), Biometrika], which is designed to estimate the underlying distribution of the observations robustly against outliers, comprises an integral term of the power of the parametric density models to be estimated. While the explicit form of the integral term can be obtained for some specific densities (such as normal density and exponential density), its computational intractability has prohibited the application of DPD-based estimation to more general parametric densities, over a quarter of a century since the proposal of DPD. This study proposes a simple stochastic optimization approach to minimize DPD for general parametric density models and explains its adequacy by referring to conventional theories on stochastic optimization. The proposed approach also can be applied to the minimization of another density power-based $\gamma$-divergence with the aid of unnormalized models.

Learning-based optimal control algorithms control unknown systems using past trajectory data and a learned model of the system dynamics. These controllers use either a linear approximation of the learned dynamics, trading performance for faster computation, or nonlinear optimization methods, which typically perform better but can limit real-time applicability. In this work, we present a novel nonlinear controller that exploits differential flatness to achieve similar performance to state-of-the-art learning-based controllers but with significantly less computational effort. Differential flatness is a property of dynamical systems whereby nonlinear systems can be exactly linearized through a nonlinear input mapping. Here, the nonlinear transformation is learned as a Gaussian process and is used in a safety filter that guarantees, with high probability, stability as well as input and flat state constraint satisfaction. This safety filter is then used to refine inputs from a flat model predictive controller to perform constrained nonlinear learning-based optimal control through two successive convex optimizations. We compare our method to state-of-the-art learning-based control strategies and achieve similar performance, but with significantly better computational efficiency, while also respecting flat state and input constraints, and guaranteeing stability.

Randomized quadratures for integrating functions in Sobolev spaces of order $\alpha \ge 1$, where the integrability condition is with respect to the Gaussian measure, are considered. In this function space, the optimal rate for the worst-case root-mean-squared error (RMSE) is established. Here, optimality is for a general class of quadratures, in which adaptive non-linear algorithms with a possibly varying number of function evaluations are also allowed. The optimal rate is given by showing matching bounds. First, a lower bound on the worst-case RMSE of $O(n^{-\alpha-1/2})$ is proven, where $n$ denotes an upper bound on the expected number of function evaluations. It turns out that a suitably randomized trapezoidal rule attains this rate, up to a logarithmic factor. A practical error estimator for this trapezoidal rule is also presented. Numerical results support our theory.

北京阿比特科技有限公司