亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In data-driven stochastic optimization, model parameters of the underlying distribution need to be estimated from data in addition to the optimization task. Recent literature considers integrating the estimation and optimization processes by selecting model parameters that lead to the best empirical objective performance. This integrated approach, which we call integrated-estimation-optimization (IEO), can be readily shown to outperform simple estimate-then-optimize (ETO) when the model is misspecified. In this paper, we show that a reverse behavior appears when the model class is well-specified and there is sufficient data. Specifically, for a general class of nonlinear stochastic optimization problems, we show that simple ETO outperforms IEO asymptotically when the model class covers the ground truth, in the strong sense of stochastic dominance of the regret. Namely, the entire distribution of the regret, not only its mean or other moments, is always better for ETO compared to IEO. Our results also apply to constrained, contextual optimization problems where the decision depends on observed features. Whenever applicable, we also demonstrate how standard sample average approximation (SAA) performs the worst when the model class is well-specified in terms of regret, and best when it is misspecified. Finally, we provide experimental results to support our theoretical comparisons and illustrate when our insights hold in finite-sample regimes and under various degrees of misspecification.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Analysis · 中位數 · 黑盒 · 數據分析 ·
2023 年 9 月 15 日

Synthetic data generation methods, and in particular, private synthetic data generation methods, are gaining popularity as a means to make copies of sensitive databases that can be shared widely for research and data analysis. Some of the fundamental operations in data analysis include analyzing aggregated statistics, e.g., count, sum, or median, on a subset of data satisfying some conditions. When synthetic data is generated, users may be interested in knowing if their aggregated queries generating such statistics can be reliably answered on the synthetic data, for instance, to decide if the synthetic data is suitable for specific tasks. However, the standard data generation systems do not provide "per-query" quality guarantees on the synthetic data, and the users have no way of knowing how much the aggregated statistics on the synthetic data can be trusted. To address this problem, we present a novel framework named DP-PQD (differentially-private per-query decider) to detect if the query answers on the private and synthetic datasets are within a user-specified threshold of each other while guaranteeing differential privacy. We give a suite of private algorithms for per-query deciders for count, sum, and median queries, analyze their properties, and evaluate them experimentally.

This study examines the inherent limitations of the prevailing Observation-Oriented modeling paradigm by approaching relationship learning from a unique dimensionality perspective. This paradigm necessitates the identification of modeling objects prior to defining relations, confining models to observational space, and limiting their access to temporal features. Relying on a singular, absolute timeline often leads to an oversight of the multi-dimensional nature of the temporal feature space. This oversight compromises model robustness and generalizability, contributing significantly to the AI misalignment issue. Drawing from the relation-centric essence of human cognition, this study presents a new Relation-Oriented paradigm, complemented by its methodological counterpart, the relation-defined representation learning, supported by extensive efficacy experiments.

Before applying data analytics or machine learning to a data set, a vital step is usually the construction of an informative set of features from the data. In this paper, we present SMARTFEAT, an efficient automated feature engineering tool to assist data users, even non-experts, in constructing useful features. Leveraging the power of Foundation Models (FMs), our approach enables the creation of new features from the data, based on contextual information and open-world knowledge. To achieve this, our method incorporates an intelligent operator selector that discerns a subset of operators, effectively avoiding exhaustive combinations of original features, as is typically observed in traditional automated feature engineering tools. Moreover, we address the limitations of performing data tasks through row-level interactions with FMs, which could lead to significant delays and costs due to excessive API calls. To tackle this, we introduce a function generator that facilitates the acquisition of efficient data transformations, such as dataframe built-in methods or lambda functions, ensuring the applicability of SMARTFEAT to generate new features for large datasets. With SMARTFEAT, dataset users can efficiently search for and apply transformations to obtain new features, leading to improvements in the AUC of downstream ML classification by up to 29.8%.

Simplicial complexes prove effective in modeling data with multiway dependencies, such as data defined along the edges of networks or within other higher-order structures. Their spectrum can be decomposed into three interpretable subspaces via the Hodge decomposition, resulting foundational in numerous applications. We leverage this decomposition to develop a contrastive self-supervised learning approach for processing simplicial data and generating embeddings that encapsulate specific spectral information.Specifically, we encode the pertinent data invariances through simplicial neural networks and devise augmentations that yield positive contrastive examples with suitable spectral properties for downstream tasks. Additionally, we reweight the significance of negative examples in the contrastive loss, considering the similarity of their Hodge components to the anchor. By encouraging a stronger separation among less similar instances, we obtain an embedding space that reflects the spectral properties of the data. The numerical results on two standard edge flow classification tasks show a superior performance even when compared to supervised learning techniques. Our findings underscore the importance of adopting a spectral perspective for contrastive learning with higher-order data.

In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models and can even learn general task-agnostic representations for efficient finetuning to downstream tasks. However, deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning. This paper provides an overview of model reprogramming to bridge this gap. Model reprogramming enables resource-efficient cross-domain machine learning by repurposing and reusing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning, where the source and target domains can be vastly different. In many applications, model reprogramming outperforms transfer learning and training from scratch. This paper elucidates the methodology of model reprogramming, summarizes existing use cases, provides a theoretical explanation of the success of model reprogramming, and concludes with a discussion on open-ended research questions and opportunities. A list of model reprogramming studies is actively maintained and updated at //github.com/IBM/model-reprogramming.

While the design of blind image quality assessment (IQA) algorithms has improved significantly, the distribution shift between the training and testing scenarios often leads to a poor performance of these methods at inference time. This motivates the study of test time adaptation (TTA) techniques to improve their performance at inference time. Existing auxiliary tasks and loss functions used for TTA may not be relevant for quality-aware adaptation of the pre-trained model. In this work, we introduce two novel quality-relevant auxiliary tasks at the batch and sample levels to enable TTA for blind IQA. In particular, we introduce a group contrastive loss at the batch level and a relative rank loss at the sample level to make the model quality aware and adapt to the target data. Our experiments reveal that even using a small batch of images from the test distribution helps achieve significant improvement in performance by updating the batch normalization statistics of the source model.

Contrastive cross-modality pretraining has recently exhibited impressive success in diverse fields, whereas there is limited research on their merits in speech emotion recognition (SER). In this paper, we propose GEmo-CLAP, a kind of gender-attribute-enhanced contrastive language-audio pretraining (CLAP) method for SER. Specifically, we first construct an effective emotion CLAP (Emo-CLAP) for SER, using pre-trained text and audio encoders. Second, given the significance of gender information in SER, two novel multi-task learning based GEmo-CLAP (ML-GEmo-CLAP) and soft label based GEmo-CLAP (SL-GEmo-CLAP) models are further proposed to incorporate gender information of speech signals, forming more reasonable objectives. Experiments on IEMOCAP indicate that our proposed two GEmo-CLAPs consistently outperform Emo-CLAP with different pre-trained models. Remarkably, the proposed WavLM-based SL-GEmo-CLAP obtains the best UAR of 81.43% and WAR of 83.16%, which performs better than state-of-the-art SER methods by at least 3%. Our system is open-sourced on Github.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司