Many empirical studies have demonstrated the performance benefits of conditional computation in neural networks, including reduced inference time and power consumption. We study the fundamental limits of neural conditional computation from the perspective of memorization capacity. For Rectified Linear Unit (ReLU) networks without conditional computation, it is known that memorizing a collection of $n$ input-output relationships can be accomplished via a neural network with $O(\sqrt{n})$ neurons. Calculating the output of this neural network can be accomplished using $O(\sqrt{n})$ elementary arithmetic operations of additions, multiplications and comparisons for each input. Using a conditional ReLU network, we show that the same task can be accomplished using only $O(\log n)$ operations per input. This represents an almost exponential improvement as compared to networks without conditional computation. We also show that the $\Theta(\log n)$ rate is the best possible. Our achievability result utilizes a general methodology to synthesize a conditional network out of an unconditional network in a computationally-efficient manner, bridging the gap between unconditional and conditional architectures.
Generative neural networks can produce data samples according to the statistical properties of their training distribution. This feature can be used to test modern computational neuroscience hypotheses suggesting that spontaneous brain activity is partially supported by top-down generative processing. A widely studied class of generative models is that of Restricted Boltzmann Machines (RBMs), which can be used as building blocks for unsupervised deep learning architectures. In this work, we systematically explore the generative dynamics of RBMs, characterizing the number of states visited during top-down sampling and investigating whether the heterogeneity of visited attractors could be increased by starting the generation process from biased hidden states. By considering an RBM trained on a classic dataset of handwritten digits, we show that the capacity to produce diverse data prototypes can be increased by initiating top-down sampling from chimera states, which encode high-level visual features of multiple digits. We also found that the model is not capable of transitioning between all possible digit states within a single generation trajectory, suggesting that the top-down dynamics is heavily constrained by the shape of the energy function.
The problem of distributed matrix-vector product is considered, where the server distributes the task of the computation among $n$ worker nodes, out of which $L$ are compromised (but non-colluding) and may return incorrect results. Specifically, it is assumed that the compromised workers are unreliable, that is, at any given time, each compromised worker may return an incorrect and correct result with probabilities $\alpha$ and $1-\alpha$, respectively. Thus, the tests are noisy. This work proposes a new probabilistic group testing approach to identify the unreliable/compromised workers with $O\left(\frac{L\log(n)}{\alpha}\right)$ tests. Moreover, using the proposed group testing method, sparse parity-check codes are constructed and used in the considered distributed computing framework for encoding, decoding and identifying the unreliable workers. This methodology has two distinct features: (i) the cost of identifying the set of $L$ unreliable workers at the server can be shown to be considerably lower than existing distributed computing methods, and (ii) the encoding and decoding functions are easily implementable and computationally efficient.
We introduce a novel spiking neural network model for learning distributed internal representations from data in an unsupervised procedure. We achieved this by transforming the non-spiking feedforward Bayesian Confidence Propagation Neural Network (BCPNN) model, employing an online correlation-based Hebbian-Bayesian learning and rewiring mechanism, shown previously to perform representation learning, into a spiking neural network with Poisson statistics and low firing rate comparable to in vivo cortical pyramidal neurons. We evaluated the representations learned by our spiking model using a linear classifier and show performance close to the non-spiking BCPNN, and competitive with other Hebbian-based spiking networks when trained on MNIST and F-MNIST machine learning benchmarks.
Many networks in political and social research are bipartite, with edges connecting exclusively across two distinct types of nodes. A common example includes cosponsorship networks, in which legislators are connected indirectly through the bills they support. Yet most existing network models are designed for unipartite networks, where edges can arise between any pair of nodes. We show that using a unipartite network model to analyze bipartite networks, as often done in practice, can result in aggregation bias. To address this methodological problem, we develop a statistical model of bipartite networks by extending the popular mixed-membership stochastic blockmodel. Our model allows researchers to identify the groups of nodes, within each node type, that share common patterns of edge formation. The model also incorporates both node and dyad-level covariates as the predictors of the edge formation patterns. We develop an efficient computational algorithm for fitting the model, and apply it to cosponsorship data from the United States Senate. We show that senators tapped into communities defined by party lines and seniority when forming cosponsorships on bills, while the pattern of cosponsorships depends on the timing and substance of legislations. We also find evidence for norms of reciprocity, and uncover the substantial role played by policy expertise in the formation of cosponsorships between senators and legislation. An open-source software package is available for implementing the proposed methodology.
Variant belief-propagation (BP) algorithms are applied to low-density parity-check (LDPC) codes, and a near Shannon limit error-rate performance is obtained. However, the decoders presented in previous literature suffer from a large resource consumption due to the accumulative calculations for each extrinsic message updating. In this paper, check belief is introduced as the probability that the corresponding parity check is satisfied. A check belief propagation (CBP) algorithm is proposed, which can force all the check nodes to contribute their check beliefs to others in a sequential order. The check nodes will enlarge the check beliefs of all the check nodes iteratively. This can result in positive check beliefs for all the check nodes, which indicates that all the parity checks are successfully satisfied. Different from previous BP algorithms, the check beliefs are propagated with no accumulative calculations at an acceptable speed, with low complexity and without performance loss. The simulation results and analyses show that the CBP algorithm provides a similar prominent error-rate performance as the previous BP algorithms, but consumes a lot fewer resources than them. It earns a big benefit in terms of complexity.
Researchers commonly believe that neural networks model a high-dimensional space but cannot give a clear definition of this space. What is this space? What is its dimension? And does it has finite dimensions? In this paper, we develop a plausible theory on interpreting neural networks in terms of the role of activation functions in neural networks and define a high-dimensional (more precisely, an infinite-dimensional) space that neural networks including deep-learning networks could create. We show that the activation function acts as a magnifying function that maps the low-dimensional linear space into an infinite-dimensional space, which can distinctly identify the polynomial approximation of any multivariate continuous function of the variable values being the same features of the given dataset. Given a dataset with each example of $d$ features $f_1$, $f_2$, $\cdots$, $f_d$, we believe that neural networks model a special space with infinite dimensions, each of which is a monomial $$\prod_{i_1, i_2, \cdots, i_d} f_1^{i_1} f_2^{i_2} \cdots f_d^{i_d}$$ for some non-negative integers ${i_1, i_2, \cdots, i_d} \in \mathbb{Z}_{0}^{+}=\{0,1,2,3,\ldots\} $. We term such an infinite-dimensional space a $\textit{ Super Space (SS)}$. We see such a dimension as the minimum information unit. Every neuron node previously through an activation layer in neural networks is a $\textit{ Super Plane (SP) }$, which is actually a polynomial of infinite degree. This $\textit{ Super Space }$ is something like a coordinate system, in which every multivalue function can be represented by a $\textit{ Super Plane }$. We also show that training NNs could at least be reduced to solving a system of nonlinear equations. %solve sets of nonlinear equations
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.