亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Edge computing provides an agile data processing platform for latency-sensitive and communication-intensive applications through a decentralized cloud and geographically distributed edge nodes. Gaining centralized control over the edge nodes can be challenging due to security issues and threats. Among several security issues, data integrity attacks can lead to inconsistent data and intrude edge data analytics. Further intensification of the attack makes it challenging to mitigate and identify the root cause. Therefore, this paper proposes a new concept of data quarantine model to mitigate data integrity attacks by quarantining intruders. The efficient security solutions in cloud, ad-hoc networks, and computer systems using quarantine have motivated adopting it in edge computing. The data acquisition edge nodes identify the intruders and quarantine all the suspected devices through dimensionality reduction. During quarantine, the proposed concept builds the reputation scores to determine the falsely identified legitimate devices and sanitize their affected data to regain data integrity. As a preliminary investigation, this work identifies an appropriate machine learning method, Linear Discriminant Analysis (LDA), for dimensionality reduction. The LDA results in 72.83% quarantine accuracy and 0.9 seconds training time, which is efficient than other state-of-the-art methods. In future, this would be implemented and validated with ground truth data.

相關內容

Without a specific functional context, non-functional requirements can only be approached as cross-cutting concerns and treated uniformly across all features of an application. This neglects, however, the heterogeneity of non-functional requirements that arises from stakeholder interests and the distinct functional scopes of software systems, which mutually influence how these non-functional requirements have to be satisfied. Earlier studies showed that the different types and objectives of non-functional requirements result in either vague or unbalanced specification of non-functional requirements. We propose a task analytic approach for eliciting and modeling user tasks to approach the stakeholders' pursued interests towards the software product. Stakeholder interests are structurally related to user tasks and each interest can be specified individually as a constraint of a specific user task. These constraints support DevOps teams with important guidance on how the interest of the stakeholder can be satisfied in the software lifecycle sufficiently. We propose a structured approach, intertwining task-oriented functional requirements with non-functional stakeholder interests to specify constraints on the level of user tasks. We also present results of a case study with domain experts, which reveals that our task modeling and interest-tailoring method increases the comprehensibility of non-functional requirements as well as their impact on the functional requirements, i.e., the users' tasks.

Data exchange among value chain partners provides them with a competitive advantage, but the risk of exposing sensitive data is ever-increasing. Information must be protected in storage and transmission to reduce this risk, so only the data producer and the final consumer can access or modify it. End-to-end (E2E) security mechanisms address this challenge, protecting companies from data breaches resulting from value chain attacks. Moreover, value chain particularities must also be considered. Multiple entities are involved in dynamic environments like these, both in data generation and consumption. Hence, a flexible generation of access policies is required to ensure that they can be updated whenever needed. This paper presents a CP-ABE-reliant data exchange system for value chains with E2E security. It considers the most relevant security and industrial requirements for value chains. The proposed solution can protect data according to access policies and update those policies without breaking E2E security or overloading field devices. In most cases, field devices are IIoT devices, limited in terms of processing and memory capabilities. The experimental evaluation has shown the proposed solution's feasibility for IIoT platforms.

Federated Learning (FL) is a paradigm in Machine Learning (ML) that addresses data privacy, security, access rights and access to heterogeneous information issues by training a global model using distributed nodes. Despite its advantages, there is an increased potential for cyberattacks on FL-based ML techniques that can undermine the benefits. Model-poisoning attacks on FL target the availability of the model. The adversarial objective is to disrupt the training. We propose attestedFL, a defense mechanism that monitors the training of individual nodes through state persistence in order to detect a malicious worker. A fine-grained assessment of the history of the worker permits the evaluation of its behavior in time and results in innovative detection strategies. We present three lines of defense that aim at assessing if the worker is reliable by observing if the node is really training, advancing towards a goal. Our defense exposes an attacker's malicious behavior and removes unreliable nodes from the aggregation process so that the FL process converge faster. Through extensive evaluations and against various adversarial settings, attestedFL increased the accuracy of the model between 12% to 58% under different scenarios such as attacks performed at different stages of convergence, attackers colluding and continuous attacks.

Industry 4.0 uses a subset of the IoT, named Industrial IoT (IIoT), to achieve connectivity, interoperability, and decentralization. The deployment of industrial networks rarely considers security by design, but this becomes imperative in smart manufacturing as connectivity increases. The combination of OT and IT infrastructures in Industry 4.0 adds new security threats beyond those of traditional industrial networks. Defence-in-Depth (DiD) strategies tackle the complexity of this problem by providing multiple defense layers, each of these focusing on a particular set of threats. Additionally, the strict requirements of IIoT networks demand lightweight encryption algorithms. Nevertheless, these ciphers must provide E2E (End-to-End) security, as data passes through intermediate entities or middleboxes before reaching their destination. If compromised, middleboxes could expose vulnerable information to potential attackers if it is not encrypted throughout this path. This paper presents an analysis of the most relevant security strategies in Industry 4.0, focusing primarily on DiD. With these in mind, it proposes a combination of DiD, an encryption algorithm called Attribute-Based-Encryption (ABE), and object security (i.e., OSCORE) to get an E2E security approach. This analysis is a critical first step to developing more complex and lightweight security frameworks suitable for Industry 4.0.

Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop an LP-based approximation algorithm. Though this algorithm directly solves MinExposed, it is often impractical in the real world due to information constraints. To this end, we develop a greedy approach based on insights from the analysis of the previous algorithm, which we show is more interpretable. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network. This makes the heuristic implementable in practice and is an important consideration. Finally, we carry out experiments on simulations of the MDP run on real-world networks, and show how the algorithms can help in bending the epidemic curve while limiting the number of isolated individuals. Our experimental results demonstrate that the greedy algorithm and its variants are especially effective, robust, and practical in a variety of realistic scenarios, such as when the contact graph and specific transmission probabilities are not known. All code can be found in our GitHub repository: //github.com/gzli929/ContactTracing.

Collaborative filtering (CF), as a fundamental approach for recommender systems, is usually built on the latent factor model with learnable parameters to predict users' preferences towards items. However, designing a proper CF model for a given data is not easy, since the properties of datasets are highly diverse. In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model by AutoML techniques. The key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction function, and prediction function. We further develop an easy-to-use, robust, and efficient search strategy, which utilizes random search and a performance predictor for efficient searching within the above framework. In this way, we can combinatorially generalize data-specific CF models, which have not been visited in the literature, from SOTA ones. Extensive experiments on five real-world datasets demonstrate that our method can consistently outperform SOTA ones for various CF tasks. Further experiments verify the rationality of the proposed framework and the efficiency of the search strategy. The searched CF models can also provide insights for exploring more effective methods in the future

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe challenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.

北京阿比特科技有限公司