Imaging problems such as the one in nanoCT require the solution of an inverse problem, where it is often taken for granted that the forward operator, i.e., the underlying physical model, is properly known. In the present work we address the problem where the forward model is inexact due to stochastic or deterministic deviations during the measurement process. We particularly investigate the performance of non-learned iterative reconstruction methods dealing with inexactness and learned reconstruction schemes, which are based on U-Nets and conditional invertible neural networks. The latter also provide the opportunity for uncertainty quantification. A synthetic large data set in line with a typical nanoCT setting is provided and extensive numerical experiments are conducted evaluating the proposed methods.
Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.
We propose an interpretation of multiparty sessions with asynchronous communication as Flow Event Structures. We introduce a new notion of global type for asynchronous multiparty sessions, ensuring the expected properties for sessions, including progress. Our global types, which reflect asynchrony more directly than standard global types and are more permissive, are themselves interpreted as Prime Event Structures. The main result is that the Event Structure interpretation of a session is equivalent, when the session is typable, to the Event Structure interpretation of its global type.
In indoor scenes, reverberation is a crucial factor in degrading the perceived quality and intelligibility of speech. In this work, we propose a generative dereverberation method. Our approach is based on a probabilistic model utilizing a recurrent variational auto-encoder (RVAE) network and the convolutive transfer function (CTF) approximation. Different from most previous approaches, the output of our RVAE serves as the prior of the clean speech. And our target is the maximum a posteriori (MAP) estimation of clean speech, which is achieved iteratively through the expectation maximization (EM) algorithm. The proposed method integrates the capabilities of network-based speech prior modelling and CTF-based observation modelling. Experiments on single-channel speech dereverberation show that the proposed generative method noticeably outperforms the advanced discriminative networks.
Finding the optimal design of experiments in the Bayesian setting typically requires estimation and optimization of the expected information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to determine good approximations of the expected information gain is increased further. The Laplace approximation has been applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator applies Laplace's method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use Monte Carlo approximation for the remaining outer integral estimation. We provide three numerical examples demonstrating the applicability and effectiveness of our proposed estimators.
Goal-conditioned rearrangement of deformable objects (e.g. straightening a rope and folding a cloth) is one of the most common deformable manipulation tasks, where the robot needs to rearrange a deformable object into a prescribed goal configuration with only visual observations. These tasks are typically confronted with two main challenges: the high dimensionality of deformable configuration space and the underlying complexity, nonlinearity and uncertainty inherent in deformable dynamics. To address these challenges, we propose a novel representation strategy that can efficiently model the deformable object states with a set of keypoints and their interactions. We further propose local-graph neural network (GNN), a light local GNN learning to jointly model the deformable rearrangement dynamics and infer the optimal manipulation actions (e.g. pick and place) by constructing and updating two dynamic graphs. Both simulated and real experiments have been conducted to demonstrate that the proposed dynamic graph representation shows superior expressiveness in modeling deformable rearrangement dynamics. Our method reaches much higher success rates on a variety of deformable rearrangement tasks (96.3% on average) than state-of-the-art method in simulation experiments. Besides, our method is much more lighter and has a 60% shorter inference time than state-of-the-art methods. We also demonstrate that our method performs well in the multi-task learning scenario and can be transferred to real-world applications with an average success rate of 95% by solely fine tuning a keypoint detector.
Achieving accurate approximations to solutions of large linear systems is crucial, especially when those systems utilize real-world data. A consequence of using real-world data is that there will inevitably be missingness. Current approaches for dealing with missing data, such as deletion and imputation, can introduce bias. Recent studies proposed an adaptation of stochastic gradient descent (SGD) in specific missing-data models. In this work, we propose a new algorithm, $\ell$-tuple mSGD, for the setting in which data is missing in a block-wise, tuple pattern. We prove that our proposed method uses unbiased estimates of the gradient of the least squares objective in the presence of tuple missing data. We also draw connections between $\ell$-tuple mSGD and previously established SGD-type methods for missing data. Furthermore, we prove our algorithm converges when using updating step sizes and empirically demonstrate the convergence of $\ell$-tuple mSGD on synthetic data. Lastly, we evaluate $\ell$-tuple mSGD applied to real-world continuous glucose monitoring (CGM) device data.
While analogies are a common way to evaluate word embeddings in NLP, it is also of interest to investigate whether or not analogical reasoning is a task in itself that can be learned. In this paper, we test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans than those in commonly used NLP benchmarks. Our experiments find that models are able to learn analogical reasoning, even with a small amount of data. We additionally compare our models to a dataset with a human baseline, and find that after training, models approach human performance.
A key challenge when trying to understand innovation is that it is a dynamic, ongoing process, which can be highly contingent on ephemeral factors such as culture, economics, or luck. This means that any analysis of the real-world process must necessarily be historical - and thus probably too late to be most useful - but also cannot be sure what the properties of the web of connections between innovations is or was. Here I try to address this by designing and generating a set of synthetic innovation web "dictionaries" that can be used to host sampled innovation timelines, probe the overall statistics and behaviours of these processes, and determine the degree of their reliance on the structure or generating algorithm. Thus, inspired by the work of Fink, Reeves, Palma and Farr (2017) on innovation in language, gastronomy, and technology, I study how new symbol discovery manifests itself in terms of additional "word" vocabulary being available from dictionaries generated from a finite number of symbols. Several distinct dictionary generation models are investigated using numerical simulation, with emphasis on the scaling of knowledge as dictionary generators and parameters are varied, and the role of which order the symbols are discovered in.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.