亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present Block-NeRF, a variant of Neural Radiance Fields that can represent large-scale environments. Specifically, we demonstrate that when scaling NeRF to render city-scale scenes spanning multiple blocks, it is vital to decompose the scene into individually trained NeRFs. This decomposition decouples rendering time from scene size, enables rendering to scale to arbitrarily large environments, and allows per-block updates of the environment. We adopt several architectural changes to make NeRF robust to data captured over months under different environmental conditions. We add appearance embeddings, learned pose refinement, and controllable exposure to each individual NeRF, and introduce a procedure for aligning appearance between adjacent NeRFs so that they can be seamlessly combined. We build a grid of Block-NeRFs from 2.8 million images to create the largest neural scene representation to date, capable of rendering an entire neighborhood of San Francisco.

相關內容

One fundamental problem in temporal graph analysis is to count the occurrences of small connected subgraph patterns (i.e., motifs), which benefits a broad range of real-world applications, such as anomaly detection, structure prediction, and network representation learning. However, existing works focused on exacting temporal motif are not scalable to large-scale temporal graph data, due to their heavy computational costs or inherent inadequacy of parallelism. In this work, we propose a scalable parallel framework for exactly counting temporal motifs in large-scale temporal graphs. We first categorize the temporal motifs based on their distinct properties, and then design customized algorithms that offer efficient strategies to exactly count the motif instances of each category. Moreover, our compact data structures, namely triple and quadruple counters, enable our algorithms to directly identify the temporal motif instances of each category, according to edge information and the relationship between edges, therefore significantly improving the counting efficiency. Based on the proposed counting algorithms, we design a hierarchical parallel framework that features both inter- and intra-node parallel strategies, and fully leverages the multi-threading capacity of modern CPU to concurrently count all temporal motifs. Extensive experiments on sixteen real-world temporal graph datasets demonstrate the superiority and capability of our proposed framework for temporal motif counting, achieving up to 538* speedup compared to the state-of-the-art methods. The source code of our method is available at: //github.com/steven-ccq/FAST-temporal-motif.

Video action recognition has been partially addressed by the CNNs stacking of fixed-size 3D kernels. However, these methods may under-perform for only capturing rigid spatial-temporal patterns in single-scale spaces, while neglecting the scale variances across different action primitives. To overcome this limitation, we propose to learn the optimal-scale kernels from the data. More specifically, an \textit{action perceptron synthesizer} is proposed to generate the kernels from a bag of fixed-size kernels that are interacted by dense routing paths. To guarantee the interaction richness and the information capacity of the paths, we design the novel \textit{optimized feature fusion layer}. This layer establishes a principled universal paradigm that suffices to cover most of the current feature fusion techniques (e.g., channel shuffling, and channel dropout) for the first time. By inserting the \textit{synthesizer}, our method can easily adapt the traditional 2D CNNs to the video understanding tasks such as action recognition with marginal additional computation cost. The proposed method is thoroughly evaluated over several challenging datasets (i.e., Somehting-to-Somthing, Kinetics and Diving48) that highly require temporal reasoning or appearance discriminating, achieving new state-of-the-art results. Particularly, our low-resolution model outperforms the recent strong baseline methods, i.e., TSM and GST, with less than 30\% of their computation cost.

We propose an unsupervised method for 3D geometry-aware representation learning of articulated objects. Though photorealistic images of articulated objects can be rendered with explicit pose control through existing 3D neural representations, these methods require ground truth 3D pose and foreground masks for training, which are expensive to obtain. We obviate this need by learning the representations with GAN training. From random poses and latent vectors, the generator is trained to produce realistic images of articulated objects by adversarial training. To avoid a large computational cost for GAN training, we propose an efficient neural representation for articulated objects based on tri-planes and then present a GAN-based framework for its unsupervised training. Experiments demonstrate the efficiency of our method and show that GAN-based training enables learning of controllable 3D representations without supervision.

Making generative models 3D-aware bridges the 2D image space and the 3D physical world yet remains challenging. Recent attempts equip a Generative Adversarial Network (GAN) with a Neural Radiance Field (NeRF), which maps 3D coordinates to pixel values, as a 3D prior. However, the implicit function in NeRF has a very local receptive field, making the generator hard to become aware of the global structure. Meanwhile, NeRF is built on volume rendering which can be too costly to produce high-resolution results, increasing the optimization difficulty. To alleviate these two problems, we propose a novel framework, termed as VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation. We first learn a feature volume to represent the underlying structure, which is then converted to a feature field using a NeRF-like model. The feature field is further accumulated into a 2D feature map as the textural representation, followed by a neural renderer for appearance synthesis. Such a design enables independent control of the shape and the appearance. Extensive experiments on a wide range of datasets show that our approach achieves sufficiently higher image quality and better 3D control than the previous methods.

Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.

Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network and projecting learned 2D features onto 3D points. Merging large-scale point clouds and images raises several challenges, such as constructing a mapping between points and pixels, and aggregating features between multiple views. Current methods require mesh reconstruction or specialized sensors to recover occlusions, and use heuristics to select and aggregate available images. In contrast, we propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions. Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks without requiring colorization, meshing, or true depth maps. We set a new state-of-the-art for large-scale indoor/outdoor semantic segmentation on S3DIS (74.7 mIoU 6-Fold) and on KITTI-360 (58.3 mIoU). Our full pipeline is accessible at //github.com/drprojects/DeepViewAgg, and only requires raw 3D scans and a set of images and poses.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司