亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Making generative models 3D-aware bridges the 2D image space and the 3D physical world yet remains challenging. Recent attempts equip a Generative Adversarial Network (GAN) with a Neural Radiance Field (NeRF), which maps 3D coordinates to pixel values, as a 3D prior. However, the implicit function in NeRF has a very local receptive field, making the generator hard to become aware of the global structure. Meanwhile, NeRF is built on volume rendering which can be too costly to produce high-resolution results, increasing the optimization difficulty. To alleviate these two problems, we propose a novel framework, termed as VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation. We first learn a feature volume to represent the underlying structure, which is then converted to a feature field using a NeRF-like model. The feature field is further accumulated into a 2D feature map as the textural representation, followed by a neural renderer for appearance synthesis. Such a design enables independent control of the shape and the appearance. Extensive experiments on a wide range of datasets show that our approach achieves sufficiently higher image quality and better 3D control than the previous methods.

相關內容

A self-driving perception model aims to extract 3D semantic representations from multiple cameras collectively into the bird's-eye-view (BEV) coordinate frame of the ego car in order to ground downstream planner. Existing perception methods often rely on error-prone depth estimation of the whole scene or learning sparse virtual 3D representations without the target geometry structure, both of which remain limited in performance and/or capability. In this paper, we present a novel end-to-end architecture for ego 3D representation learning from an arbitrary number of unconstrained camera views. Inspired by the ray tracing principle, we design a polarized grid of "imaginary eyes" as the learnable ego 3D representation and formulate the learning process with the adaptive attention mechanism in conjunction with the 3D-to-2D projection. Critically, this formulation allows extracting rich 3D representation from 2D images without any depth supervision, and with the built-in geometry structure consistent w.r.t. BEV. Despite its simplicity and versatility, extensive experiments on standard BEV visual tasks (e.g., camera-based 3D object detection and BEV segmentation) show that our model outperforms all state-of-the-art alternatives significantly, with an extra advantage in computational efficiency from multi-task learning.

The Transformer architecture has gained growing attention in graph representation learning recently, as it naturally overcomes several limitations of graph neural networks (GNNs) by avoiding their strict structural inductive biases and instead only encoding the graph structure via positional encoding. Here, we show that the node representations generated by the Transformer with positional encoding do not necessarily capture structural similarity between them. To address this issue, we propose the Structure-Aware Transformer, a class of simple and flexible graph Transformers built upon a new self-attention mechanism. This new self-attention incorporates structural information into the original self-attention by extracting a subgraph representation rooted at each node before computing the attention. We propose several methods for automatically generating the subgraph representation and show theoretically that the resulting representations are at least as expressive as the subgraph representations. Empirically, our method achieves state-of-the-art performance on five graph prediction benchmarks. Our structure-aware framework can leverage any existing GNN to extract the subgraph representation, and we show that it systematically improves performance relative to the base GNN model, successfully combining the advantages of GNNs and Transformers. Our code is available at //github.com/BorgwardtLab/SAT .

Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input, has recently received considerable attention with regard to its tremendous application potentials. Although deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets, they ignore the relationship between L1- and perceptual- minimization and roughly adopt auxiliary large-scale datasets for pre-training. In this paper, we discuss the image types within a corrupted image and the property of perceptual- and Euclidean- based evaluation protocols. Then we propose a method, Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1- based cooperative learning. Moreover, a noise-guidance data collection strategy is developed to address the training time consumption in multiple datasets optimization. When an auxiliary dataset is incorporated, RWSR-EDL achieves promising results and repulses any training time increment by adopting the noise-guidance data collection strategy. Extensive experiments show that RWSR-EDL achieves competitive performance over state-of-the-art methods on four in-the-wild image super-resolution datasets.

The advent of deep learning has led to significant progress in monocular human reconstruction. However, existing representations, such as parametric models, voxel grids, meshes and implicit neural representations, have difficulties achieving high-quality results and real-time speed at the same time. In this paper, we propose Fourier Occupancy Field (FOF), a novel powerful, efficient and flexible 3D representation, for monocular real-time and accurate human reconstruction. The FOF represents a 3D object with a 2D field orthogonal to the view direction where at each 2D position the occupancy field of the object along the view direction is compactly represented with the first few terms of Fourier series, which retains the topology and neighborhood relation in the 2D domain. A FOF can be stored as a multi-channel image, which is compatible with 2D convolutional neural networks and can bridge the gap between 3D geometries and 2D images. The FOF is very flexible and extensible, e.g., parametric models can be easily integrated into a FOF as a prior to generate more robust results. Based on FOF, we design the first 30+FPS high-fidelity real-time monocular human reconstruction framework. We demonstrate the potential of FOF on both public dataset and real captured data. The code will be released for research purposes.

Protein representation learning methods have shown great potential to yield useful representation for many downstream tasks, especially on protein classification. Moreover, a few recent studies have shown great promise in addressing insufficient labels of proteins with self-supervised learning methods. However, existing protein language models are usually pretrained on protein sequences without considering the important protein structural information. To this end, we propose a novel structure-aware protein self-supervised learning method to effectively capture structural information of proteins. In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral angle perspective, respectively. Furthermore, we propose to leverage the available protein language model pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme. Experiments on several supervised downstream tasks verify the effectiveness of our proposed method.

Spatio-temporal graph learning is a key method for urban computing tasks, such as traffic flow, taxi demand and air quality forecasting. Due to the high cost of data collection, some developing cities have few available data, which makes it infeasible to train a well-performed model. To address this challenge, cross-city knowledge transfer has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities. However, the spatio-temporal graphs among different cities show irregular structures and varied features, which limits the feasibility of existing Few-Shot Learning (\emph{FSL}) methods. Therefore, we propose a model-agnostic few-shot learning framework for spatio-temporal graph called ST-GFSL. Specifically, to enhance feature extraction by transfering cross-city knowledge, ST-GFSL proposes to generate non-shared parameters based on node-level meta knowledge. The nodes in target city transfer the knowledge via parameter matching, retrieving from similar spatio-temporal characteristics. Furthermore, we propose to reconstruct the graph structure during meta-learning. The graph reconstruction loss is defined to guide structure-aware learning, avoiding structure deviation among different datasets. We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.

Human perception is routinely assessing the similarity between images, both for decision making and creative thinking. But the underlying cognitive process is not really well understood yet, hence difficult to be mimicked by computer vision systems. State-of-the-art approaches using deep architectures are often based on the comparison of images described as feature vectors learned for image categorization task. As a consequence, such features are powerful to compare semantically related images but not really efficient to compare images visually similar but semantically unrelated. Inspired by previous works on neural features adaptation to psycho-cognitive representations, we focus here on the specific task of learning visual image similarities when analogy matters. We propose to compare different supervised, semi-supervised and self-supervised networks, pre-trained on distinct scales and contents datasets (such as ImageNet-21k, ImageNet-1K or VGGFace2) to conclude which model may be the best to approximate the visual cortex and learn only an adaptation function corresponding to the approximation of the the primate IT cortex through the metric learning framework. Our experiments conducted on the Totally Looks Like image dataset highlight the interest of our method, by increasing the retrieval scores of the best model @1 by 2.25x. This research work was recently accepted for publication at the ICIP 2021 international conference [1]. In this new article, we expand on this previous work by using and comparing new pre-trained feature extractors on other datasets.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司