亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

相關內容

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at //github.com/Spico197/Mirror .

In data-driven systems, data exploration is imperative for making real-time decisions. However, big data is stored in massive databases that are difficult to retrieve. Approximate Query Processing (AQP) is a technique for providing approximate answers to aggregate queries based on a summary of the data (synopsis) that closely replicates the behavior of the actual data, which can be useful where an approximate answer to the queries would be acceptable in a fraction of the real execution time. This study explores the novel utilization of Generative Adversarial Networks (GANs) in the generation of tabular data that can be employed in AQP for synopsis construction. We thoroughly investigate the unique challenges posed by the synopsis construction process, including maintaining data distribution characteristics, handling bounded continuous and categorical data, and preserving semantic relationships and then introduce the advancement of tabular GAN architectures that overcome these challenges. Furthermore, we propose and validate a suite of statistical metrics tailored for assessing the reliability of the GAN-generated synopses. Our findings demonstrate that advanced GAN variations exhibit a promising capacity to generate high-fidelity synopses, potentially transforming the efficiency and effectiveness of AQP in data-driven systems.

Storing network traffic data is key to efficient network management; however, it is becoming more challenging and costly due to the ever-increasing data transmission rates, traffic volumes, and connected devices. In this paper, we explore the use of neural architectures for network traffic compression. Specifically, we consider a network scenario with multiple measurement points in a network topology. Such measurements can be interpreted as multiple time series that exhibit spatial and temporal correlations induced by network topology, routing, or user behavior. We present \textit{Atom}, a neural traffic compression method that leverages spatial and temporal correlations present in network traffic. \textit{Atom} implements a customized spatio-temporal graph neural network design that effectively exploits both types of correlations simultaneously. The experimental results show that \textit{Atom} can outperform GZIP's compression ratios by 50\%-65\% on three real-world networks.

To reap the promising benefits of massive multiple-input multiple-output (MIMO) systems, accurate channel state information (CSI) is required through channel estimation. However, due to the complicated wireless propagation environment and large-scale antenna arrays, precise channel estimation for massive MIMO systems is significantly challenging and costs an enormous training overhead. Considerable time-frequency resources are consumed to acquire sufficient accuracy of CSI, which thus severely degrades systems' spectral and energy efficiencies. In this paper, we propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots, by jointly learning the spatial-temporal domain features of massive MIMO channels with the temporal attention module and the spatial attention module. To further improve the estimation accuracy, we propose a parameter-instance transfer learning approach to transfer the channel knowledge learned from the high-density pilots pre-acquired during the training dataset collection period. Experimental results reveal that the proposed DACEN-based method achieves better channel estimation performance than the existing methods under various pilot-density settings and signal-to-noise ratios. Additionally, with the proposed parameter-instance transfer learning approach, the DACEN-based method achieves additional performance gain, thereby further demonstrating the effectiveness and superiority of the proposed method.

Edge-device collaboration has the potential to facilitate compute-intensive device pose tracking for resource-constrained mobile augmented reality (MAR) devices. In this paper, we devise a 3D map management scheme for edge-assisted MAR, wherein an edge server constructs and updates a 3D map of the physical environment by using the camera frames uploaded from an MAR device, to support local device pose tracking. Our objective is to minimize the uncertainty of device pose tracking by periodically selecting a proper set of uploaded camera frames and updating the 3D map. To cope with the dynamics of the uplink data rate and the user's pose, we formulate a Bayes-adaptive Markov decision process problem and propose a digital twin (DT)-based approach to solve the problem. First, a DT is designed as a data model to capture the time-varying uplink data rate, thereby supporting 3D map management. Second, utilizing extensive generated data provided by the DT, a model-based reinforcement learning algorithm is developed to manage the 3D map while adapting to these dynamics. Numerical results demonstrate that the designed DT outperforms Markov models in accurately capturing the time-varying uplink data rate, and our devised DT-based 3D map management scheme surpasses benchmark schemes in reducing device pose tracking uncertainty.

With the rapid transformation of computer hardware and algorithms, mobile networking has evolved from low data carrying capacity and high latency to better-optimized networks, either by enhancing the digital network or using different approaches to reduce network traffic. This paper discusses the big data applications and scheduling in the distributed networking and analyzes the opportunities and challenges of data management systems. The analysis shows that the big data scheduling in the cloud computing environment produces the most efficient way to transfer and synchronize data. Since scheduling problems and cloud models are very complex to analyze in different settings, we set it to the typical software defined networks. The development of cloud management models and coflow scheduling algorithm is proved to be the priority of the digital communications and networks development in the future.

Heterogeneous systems, consisting of CPUs and GPUs, offer the capability to address the demands of compute- and data-intensive applications. However, programming such systems is challenging, requiring knowledge of various parallel programming frameworks. This paper introduces COMPAR, a component-based parallel programming framework that enables the exposure and selection of multiple implementation variants of components at runtime. The framework leverages compiler directive-based language extensions to annotate the source code and generate the necessary glue code for the StarPU runtime system. COMPAR provides a unified view of implementation variants and allows for intelligent selection based on runtime context. Our evaluation demonstrates the effectiveness of COMPAR through benchmark applications. The proposed approach simplifies heterogeneous parallel programming and promotes code reuse while achieving optimal performance.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司