亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Based on binary inquiries, we developed an algorithm to estimate population quantiles under Local Differential Privacy (LDP). By self-normalizing, our algorithm provides asymptotically normal estimation with valid inference, resulting in tight confidence intervals without the need for nuisance parameters to be estimated. Our proposed method can be conducted fully online, leading to high computational efficiency and minimal storage requirements with $\mathcal{O}(1)$ space. We also proved an optimality result by an elegant application of one central limit theorem of Gaussian Differential Privacy (GDP) when targeting the frequently encountered median estimation problem. With mathematical proof and extensive numerical testing, we demonstrate the validity of our algorithm both theoretically and experimentally.

相關內容

Video moment localization aims to retrieve the target segment of an untrimmed video according to the natural language query. Weakly supervised methods gains attention recently, as the precise temporal location of the target segment is not always available. However, one of the greatest challenges encountered by the weakly supervised method is implied in the mismatch between the video and language induced by the coarse temporal annotations. To refine the vision-language alignment, recent works contrast the cross-modality similarities driven by reconstructing masked queries between positive and negative video proposals. However, the reconstruction may be influenced by the latent spurious correlation between the unmasked and the masked parts, which distorts the restoring process and further degrades the efficacy of contrastive learning since the masked words are not completely reconstructed from the cross-modality knowledge. In this paper, we discover and mitigate this spurious correlation through a novel proposed counterfactual cross-modality reasoning method. Specifically, we first formulate query reconstruction as an aggregated causal effect of cross-modality and query knowledge. Then by introducing counterfactual cross-modality knowledge into this aggregation, the spurious impact of the unmasked part contributing to the reconstruction is explicitly modeled. Finally, by suppressing the unimodal effect of masked query, we can rectify the reconstructions of video proposals to perform reasonable contrastive learning. Extensive experimental evaluations demonstrate the effectiveness of our proposed method. The code is available at \href{//github.com/sLdZ0306/CCR}{//github.com/sLdZ0306/CCR}.

In the past few years, there has been considerable interest in two prominent approaches for Distributionally Robust Optimization (DRO): Divergence-based and Wasserstein-based methods. The divergence approach models misspecification in terms of likelihood ratios, while the latter models it through a measure of distance or cost in actual outcomes. Building upon these advances, this paper introduces a novel approach that unifies these methods into a single framework based on optimal transport (OT) with conditional moment constraints. Our proposed approach, for example, makes it possible for optimal adversarial distributions to simultaneously perturb likelihood and outcomes, while producing an optimal (in an optimal transport sense) coupling between the baseline model and the adversarial model.Additionally, the paper investigates several duality results and presents tractable reformulations that enhance the practical applicability of this unified framework.

With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.

This study focuses on the critical aspect of robust state estimation for the safe navigation of an Autonomous Vehicle (AV). Existing literature primarily employs two prevalent techniques for state estimation, namely filtering-based and graph-based approaches. Factor Graph (FG) is a graph-based approach, constructed using Values and Factors for Maximum Aposteriori (MAP) estimation, that offers a modular architecture that facilitates the integration of inputs from diverse sensors. However, most FG-based architectures in current use require explicit knowledge of sensor parameters and are designed for single setups. To address these limitations, this research introduces a novel plug-and-play FG-based state estimator capable of operating without predefined sensor parameters. This estimator is suitable for deployment in multiple sensor setups, offering convenience and providing comprehensive state estimation at a high frequency, including mean and covariances. The proposed algorithm undergoes rigorous validation using various sensor setups on two different vehicles: a quadricycle and a shuttle bus. The algorithm provides accurate and robust state estimation across diverse scenarios, even when faced with degraded Global Navigation Satellite System (GNSS) measurements or complete outages. These findings highlight the efficacy and reliability of the algorithm in real-world AV applications.

Physics-informed neural networks (PINNs) are known to suffer from optimization difficulty. In this work, we reveal the connection between the optimization difficulty of PINNs and activation functions. Specifically, we show that PINNs exhibit high sensitivity to activation functions when solving PDEs with distinct properties. Existing works usually choose activation functions by inefficient trial-and-error. To avoid the inefficient manual selection and to alleviate the optimization difficulty of PINNs, we introduce adaptive activation functions to search for the optimal function when solving different problems. We compare different adaptive activation functions and discuss their limitations in the context of PINNs. Furthermore, we propose to tailor the idea of learning combinations of candidate activation functions to the PINNs optimization, which has a higher requirement for the smoothness and diversity on learned functions. This is achieved by removing activation functions which cannot provide higher-order derivatives from the candidate set and incorporating elementary functions with different properties according to our prior knowledge about the PDE at hand. We further enhance the search space with adaptive slopes. The proposed adaptive activation function can be used to solve different PDE systems in an interpretable way. Its effectiveness is demonstrated on a series of benchmarks. Code is available at //github.com/LeapLabTHU/AdaAFforPINNs.

We focus on the control of unknown Partial Differential Equations (PDEs). The system dynamics is unknown, but we assume we are able to observe its evolution for a given control input, as typical in a Reinforcement Learning framework. We propose an algorithm based on the idea to control and identify on the fly the unknown system configuration. In this work, the control is based on the State-Dependent Riccati approach, whereas the identification of the model on Bayesian linear regression. At each iteration, based on the observed data, we obtain an estimate of the a-priori unknown parameter configuration of the PDE and then we compute the control of the correspondent model. We show by numerical evidence the convergence of the method for infinite horizon control problems.

Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The R package VBsparsePCA with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).

Traditional approaches in speech emotion recognition, such as LSTM, CNN, RNN, SVM, and MLP, have limitations such as difficulty capturing long-term dependencies in sequential data, capturing the temporal dynamics, and struggling to capture complex patterns and relationships in multimodal data. This research addresses these shortcomings by proposing an ensemble model that combines Graph Convolutional Networks (GCN) for processing textual data and the HuBERT transformer for analyzing audio signals. We found that GCNs excel at capturing Long-term contextual dependencies and relationships within textual data by leveraging graph-based representations of text and thus detecting the contextual meaning and semantic relationships between words. On the other hand, HuBERT utilizes self-attention mechanisms to capture long-range dependencies, enabling the modeling of temporal dynamics present in speech and capturing subtle nuances and variations that contribute to emotion recognition. By combining GCN and HuBERT, our ensemble model can leverage the strengths of both approaches. This allows for the simultaneous analysis of multimodal data, and the fusion of these modalities enables the extraction of complementary information, enhancing the discriminative power of the emotion recognition system. The results indicate that the combined model can overcome the limitations of traditional methods, leading to enhanced accuracy in recognizing emotions from speech.

Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

北京阿比特科技有限公司